3 credits.

Prerequisites: C or better in MATH 344, MATH 544, or MATH 700, or the equivalent, or instructor permission.

Fundamentals of quantum information processing, including quantum computation, quantum cryptography, and quantum information theory. Topics include: the quantum circuit model, alternative models, qubits, unitary operators, measurement, entanglement, quantum algorithms for factoring and search, quantum cryptographic key distribution, simulation of physical systems, error-correction and fault-tolerance, information capacity of quantum channels, complexity of quantum computation, near-term implementations, quantum supremacy and quantum advantage.