Support: NSF CNS Core Program:
NSF #1910853
CNS Core: Small: Software-Hardware Reconfigurable Systems for Mobile Millimeter-Wave Networks
Synopsis:
Millimeter-wave is a core technology for next-generation wireless and cellular networks (5G and beyond). Networks using millimeter-wave technologies are expected to satiate the rapidly growing customer appetite for mobile data and to meet the stringent throughput, latency, and reliability requirements of emerging applications, such as immersive virtual and mixed reality, tactile internet, vehicular communications, and autonomous vehicles safety. However, high directionality, high channel dynamics, and sensitivity to blockages render state-of-the-art millimeter-wave technologies unsuitable for low-latency, high performance, and ultra-reliable applications. This research project focuses on designing software-hardware reconfigurable systems to address the key challenges and improve the performance, availability, and reliability of mobile millimeter-wave networks. This project will impact the broader population positively because it yields near-term benefits in 5G infrastructure and paves the way for long-term millimeter-wave research. Furthermore, this project will engage in outreach activities and involve a diverse set of students, particularly, women and minorities, leveraging the experimental nature of the research on next-generation wireless and cellular networks.
The project addresses the key challenges by executing three thrusts: (1) MilliNet: To overcome high signal attenuation, millimeter-wave radios must focus their power via highly directional, electronically steerable beams. But, aligning the beams and maintaining the link between devices during obstruction and mobility are the fundamental barriers toward reliable connection. MilliNet, a faster beam alignment protocol, draws on ideas from the sparse channel recovery, allowing the radios to quickly discern the best physical millimeter-wave paths even under thousands of beams and picocell choices. (2) ReconMilli: To achieve spectrum flexibility, next-generation radios must be able to operate over a wide range of the spectrum, from micro-wave to millimeter-wave. But the fundamental challenge is that physical space on mobile devices is limited. ReconMilli, a reconfigurable antenna design, joins multiple millimeter-wave antennas physically into a micro-wave antenna, but splits it, when needed, into multiple millimeter-wave antennas; thus, achieving spectrum flexibility and saving physical space. (3) LiMesh: To make the deployment and maintenance of a 5G picocell mesh easy, mobile operators will use multi-Gbps fixed millimeter-wave links. Yet, disruptions in the wireless mesh are common; but, more importantly, such disruptions are catastrophic for ultra-reliable connectivity. LiMesh, an ultra-reliable picocell mesh design, leverages the fixed geometrical arrangement of the directional links to infer disruptions using a space-time failure correlation metric proactively. The research project will design, build, and empirically validate the proposed systems in millimeter-wave wireless test-beds.
Publications and Other Products:
🏆 VisualMM: Visual Data & Learning Aided 5G Picocell Placement Timothy Dayne Hooks, Hem Regmi, Sanjib Sur HotMobile'21ACM International Workshop on Mobile Computing Systems and Applications,
Virtual, February 2021
[ Paper ]
(Best Poster Award)
🏆 ZigZagCam: Pushing the Limits of Hand-held Millimeter-Wave Imaging Hem Regmi, Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi HotMobile'21ACM International Workshop on Mobile Computing Systems and Applications,
Virtual, February 2021
[ Paper ]
(Best Poster Runner-up Award)
SpiroMilli: Bringing Ad-hoc Spirometry to 5G Devices Aakriti Adhikari, Austin Hetherington, Sanjib Sur HotMobile'21ACM International Workshop on Mobile Computing Systems and Applications,
Virtual, February 2021
[ Paper ]
mmFlow: Facilitating At-Home Spirometry with 5G Smart Devices
Aakriti Adhikari, Austin Hetherington, Sanjib Sur SECON'21IEEE International Conference on Sensing, Communication and Networking,
Virtual, July 2021
[ Paper ]
[
Talk ]
SquiggleMilli: Approximating SAR Imaging on Mobile Millimeter-Wave Devices
Hem Regmi, Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi IMWUT'21Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
Virtual, September 2021
[ Paper ]
[
Talk ]
AutoPCD: Learning-Augmented Indoor Point Cloud Completion Pingping Cai, Edward M Sitar, Sanjib Sur UbiComp-ISWC'21ACM International Joint Conference on Pervasive and Ubiquitous Computing and ACM International Symposium on Wearable Computers,
Virtual, September 2021
[ Paper ]
ViSAR: A Mobile Platform for Vision-Integrated Millimeter-Wave Synthetic Aperture Radar Jacqueline M Schellberg, Sanjib Sur UbiComp-ISWC'21ACM International Joint Conference on Pervasive and Ubiquitous Computing and ACM International Symposium on Wearable Computers,
Virtual, September 2021
[ Paper ]
MilliPose: Facilitating Full Body Silhouette Imaging from Millimeter-Wave Device Aakriti Adhikari, Sanjib Sur UbiComp-ISWC'21ACM International Joint Conference on Pervasive and Ubiquitous Computing and ACM International Symposium on Wearable Computers,
Virtual, September 2021
[ Paper ]
A Case for Temperature-Aware Scheduler for Millimeter-Wave Devices and Networks
Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi ICNP'20The 28th IEEE International Conference on Network Protocols,
Madrid, Spain, October 2020
[ Paper ]
Poster: Bringing Temperature-Awareness to Millimeter-Wave Networks Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi MobiCom'20ACM International Conference on Mobile Computing and Networking,
London, UK, September 2020
[ Paper ]
CmWave to MmWave Reconfigurable Antenna for 5G Applications Jinqun Ge, Guoan Wang AP-S'20IEEE Antenna and Propagation Symposium,
Quebec, Canada, July 2020
US Patent Application 63/176,514,
Facilitating At-Home Spirometry with Millimeter-Wave Devices,
Sanjib Sur, Aakriti Adhikari,
Filed on April 2021
US Patent Application 63/182,257,
Transforming Cheap Spirometers to Estimate Flow-Volume Graph by Deep Learning,
Sanjib Sur, Aakriti Adhikari,
Filed on April 2021
US Utility Patent Application 17/327,881,
Heat Dissipation for Millimeter-Wave Devices with Antenna Switching,
Sanjib Sur, Moh Sabbir Saadat, Srihari Nelakuditi,
Filed on May 2021
US Patent Application 63/192,345,
Human-Perceptible and Machine-Readable Shape Generation and Classification of Hidden Objects,
Sanjib Sur, Hem Regmi,
Filed on May 2021
US Patent Application 63/055,386,
Heat Dissipation for Millimeter-Wave Devices with Antenna Switching,
Sanjib Sur, Moh Sabbir Saadat, Srihari Nelakuditi,
Filed on July 2020
US Patent Application 63/025,333,
Methods and Integrated Structures of Heat Dissipation for Microwave
Antennas,
Guoan Wang, Jinqun Ge, Sanjib Sur, Srihari Nelakuditi,
Filed on May 2020
US Patent Application 62/924,436,
A Reconfigurable Antenna Design
for Centimeter-Wave and Millimeter-Wave,
Sanjib Sur, Guoan Wang, Srihari Nelakuditi,
Filed on Oct. 2019
Education, Outreach, and Other Broader Impacts:
PI Sur is invited to serve at the TPC of IEEE WoWMoM 2022
PI Sur is invited to serve as the session chair for IEEE MASS 2021.
PI Sur is invited to present at the IEEE Columbia section.
PI Sur served at the TPC of
ACM mmNets, ACM MSN, IEEE MASS, IEEE ICDCS, IEEE WoWMoM, IEEE IFIP Networking, ACM WinTECH, IEEE STEERS 2021.
PI Sur created and organized the first version of
IEEE STEERS workshop, in conjunction with IEEE CCGRID, 2021
We have recruited an URM undergraduate researcher to
participate in the project during Summer'20. We have also recruited another
undergraduate researcher in Fall'20 through REU. Our team involves female and
URM students.
Open-Source Software and Data Release:
ANSYS HFSS simulation for 28 GHz to 6 GHz reconfigurable antenna: Coming soon.
Temperature-aware multi antenna scheduler code.
By downloading the code, you accept the following terms:
The data is for non-commercial use only (see details in the license file).
For any reuse or distribution, you must make clear to others the license terms of this work.
If you use it in your research work, please acknowledge the source and cite the appropriate paper(s) in the publication list above. Accept and download.
Thermal characterization data from 60 GHz millimeter-wave devices is available now for downloading! This is the data base for our Aquilo project (paper in ICNP'20, poster in MobiCom'20).
By downloading the data, you accept the following terms:
The data is for non-commercial use only (see details in the license file).
For any reuse or distribution, you must make clear to others the license terms of this work.
If you use it in your research work, please acknowledge the source and cite the appropriate paper(s) in the publication list above. Accept and download.