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Figure 1: (a) Exhalation on a mmWave device; (b) Phase of the reflected signal shows tiny vibrations during airflow; (c) Time-
synchronized vibration signals from multiple phased-array antennas; (d) Signal processing to improve fidelity, track moving
reflectors, and estimate distance-invariant vibration; (¢) CNN-LSTM architecture to map physical vibration to 7 key spirometry
indicators; and (f) Predicted flow rate in comparison to ground-truth for two subjects.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; - Computing methodologies — Neu-
ral networks.
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AD-HOC SPIROMETRY MOTIVATION

The rapid evolution of the telehealth industry, accelerated recently
by stay-at-home directives, has created a demand for more ubiqui-
tous health-sensing tools. One such tool is the Spirometer. Spirome-
ters have been used in traditional clinics to measure lung capacity
(volume) as well as airflow (flow rate) and have wide applicability
in the diagnosis of Asthma, COPD, and other pulmonary diseases.
In addition, they can be used to diagnose Dyspnea, i.e., shortness
of breath, one of the symptoms of the COVID-19 virus. Several
spirometers are available commercially for home-use, but they are
either costly, cumbersome or provide limited flow information [3].
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We propose SpiroMilli, alow-barrier means to performing spirom-
etry at home using the millimeter-wave (mmWave) technology in
5G-and-beyond devices. To perform a test, users will hold the device
in front of their mouth, fully inhale, then sharply exhale. The system
will then output seven key indicators, e.g., Forced Vital Capacity
(FVC), Peak Expiratory Flow (PEF), etc., along with a flow-volume
curve (Fig. 1[f]). SpiroMilli’s key idea is intuitive: Strong airflow in
front of the mmWave antenna creates tiny vibrations, and these
vibrations affect the phase of reflected signals from nearby objects.
For example, a 79 GHz device (wavelength: 3.79 mm) will register a
5 um displacement as a 1° phase change.

But SpiroMilli faces two primary challenges: (1) Phase changes
should only derive from airflow vibrations, yet the sway motions
of the hand and face may not allow for it; and (2) Even if the
phase change is tracked accurately, a direct mapping between phase
change to the seven key indicators and its corresponding flow-
volume curve does not exist.

SYSTEM DESIGN

To overcome the challenges, SpiroMilli proposes two approaches:
(1) Beamforming, reflector tracking, and distance calibrating mod-
ules which afford us with accurate phase estimation, regardless of
idiosyncrasies in the users’ movements; and (2) A machine-learning
model that both learns and maps the vibration to key indicators
and a flow-volume curve.

First, assume that the user holds the device in a static position;
the phase of the reflected signals remains static. However, when
airflow strikes the surface, the device starts to vibrate. Time-variant
changes in the device-to-reflector distance result in phase changes
of Ag(t) = 4w Ad(t)/ A, where Ad(t) is the change in distance, and A
is the signal wavelength. Fig. 1(b) shows an example of such phase
changes for a peak flow-rate of 4.67 L/s. We can remove the unde-
sired effect of low-frequency hand sway movements on phase by
applying a highpass filter. Then, combining signal beamforming
and a novel reflector tracking algorithm, we ensure the source of
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the strongest reflections remains the same throughout the measure-
ment. In the future, we will adopt a distance-based transfer function
so phase changes can accurately predict the flow rate passing at
the lips regardless of device distance.

Second, the relationship between device vibration and spirome-
try indicators is complex and has never been explored before. We
apply a Convolutional Neural Network that learns the representa-
tive features in the vibration with LSTM to capture the temporal
dependency and variations [2]. CNN-LSTM can then be used to
map physical vibrations to the seven key indicators. In addition to
the key indicators, clinicians also use the flow-volume curve as a
diagnostic tool [3]. To this end, we have used a deep residual de-
coder architecture and open-source data from the CDC containing
155,000 spirometry tests [1] to learn the mapping between the key
indicators and its flow-volume curve. Figs. 1(e—f) show the CNN-
LSTM architecture along with the predicted flow-volume graphs
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for two experimental subjects. In the future, we will evaluate our
method with different device form factors, multiple subjects, and
under various environmental conditions.
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