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Figure 1: (a) Measurement setup with a 5G transceiver and a Google Tango phone; (b) Visual Point Cloud Data (PCD); (c) 2D
depth projected from one viewpoint inside the PCD; (d) CNN-based prediction framework that learns the correlation between
visual features to mmWave signal strength; (e) Sparsity encoder-decoder to learn the strongest reflectors in the environment;
and (f) An example of signal strength predicted in the environment in comparison to the ground-truth.

CCS CONCEPTS
• Networks → Network management; • Computing method-
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PICOCELL DEPLOYMENT CHALLENGES
Millimeter-wave (mmWave), the core technology of 5G, offers sub-
stantially higher data-rates than traditional wireless, but the com-
munications are limited to Line-Of-Sight (LOS) and very few re-
flection paths. So, the network relies on short-range base-stations
called “picocells.” Since the paths are prone to obstructions and
specular reflections, networks require careful picocell placement.
Furthermore, picocells must be densely deployed to compensate
for their short-range, and often demand unintuitive placement lo-
cations to maximize their effectiveness. Because of the placement
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density and accuracy requirements, thorough site surveys are often
time consuming and expensive. In summary, we have two related
challenges: (1) Effective utilization of 5G networks could be ham-
pered without sufficiently judicious picocell deployments; and (2)
Small changes in an environment after deployment could necessi-
tate re-arranging the picocells, requiring repeat site surveys, and
thus, increasing network maintenance costs.

We propose VisualMM , a tool to enable 5G deployers to quickly
and efficiently complete site-surveys without sacrificing the ac-
curacy and effectiveness of thorough placement surveys. Our ap-
proach is intuitive: VisualMM identifies deployment locations that
maximize a set of picocells’ likelihood of having reflection paths.
Thus, the network could be more effective in a dynamic environ-
ment, by virtue of not being dependent on only the LOS path. The
key idea is to first model the mmWave reflection profile of an envi-
ronment, considering dominant reflectors, and then use this model
to find locations that maximize the usability of the reflectors.

VISUALMM DESIGN
First, a deployer uses an AR device, like Google Tango (Fig. 1[a]), to
quickly create a visual map by walking around (Fig. 1[b]); Second,
as the deployer is walking around, a co-located 5G transceiver con-
tinuously measures the reflections from various objects by steering
the mmWave beam rapidly. Finally, VisualMM leverages the visual
data and corresponding reflections to create a mapping between
objects to their mmWave reflections. Intuitively, similar looking
objects likely produce similar reflections; thus, the learned model
can potentially predict the signal reflection patterns from any other
viewpoint, even if the deployer has not measured them. VisualMM
then uses this prediction to estimate the locations that have the
maximum likelihood of finding reflection paths.
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To learn the mapping, we propose to use a Convolutional Neural
Network (CNN) that maps depth and color to the reflections through
supervised learning [1]. From the 3D visual data, we project a 2D
depth image from a viewpoint where the reflections were collected,
and then feed the reflection as the training ground-truth to the
CNN. The prediction network extracts the features with multiple
convolutions followed by batch-normalization and leaky ReLU layer
[1]. We further amend the network by incorporating the antenna
pose information since reflection is also affected by the way the
deployer holds the device, and the device steers its beam.

Furthermore, mmWave reflections are mostly sparse, i.e., many
objects in the environment do not reflect back signals. So, instead of
predicting the reflections from every point, VisualMM only predicts
the strongest ones. We apply a sparsity encoder-decoder to extract
such sparse patterns in the reflected signal (Fig. 1[e]); the encoder

converts the original reflections (mostly sparse) to only 10 reflection
points, and the decoder predicts the signal strength. Fig. 1(f) shows
an example signal strength prediction result, which closely matches
to the ground-truth. In the future, we will evaluate VisualMM in
multiple indoor and outdoor environments, with different lighting
conditions, its deployment effectiveness, and its ability to transfer
learning between environments.
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