How to evict an old page

• Select an old page to evict
 – How to select? Replacement algorithm
• Find all pages that refer to the old page frame, if the page frame is shared
• Set each page table entry to invalid
• Remove TLB entries
• Write changes on page back to disk, if it has been modified

Some slides are courtesy of Dr. Thomas Anderson
How do we know if a page has been modified?

• Every page table entry has some status bits
 – Dirty bit: has page been modified?
 • Set by hardware on store instruction
 – Accessed bit: has page been recently used?
 • Set by hardware on reference

• Status bits can be reset by the OS kernel
 – When changes to page are flushed to disk
 – When enforcing the clock algorithm (to be discussed)
Cache Replacement Policy

• On a cache miss, how do we choose which entry to replace?

• Policy goal: reduce cache misses
A Simple Policy

• Random?
 – Replace a random entry

• FIFO?
 – Replace the entry that has been in the cache the longest time
 – What could go wrong?
MIN, LRU, LFU

• MIN
 – Replace the cache entry that will not be used for the longest time into the future
 – Optimality proof based on exchange: if evict an entry used sooner, that will trigger an earlier cache miss

• Least Recently Used (LRU)
 – Replace the cache entry that has not been used for the longest time in the past
 – Approximation of MIN

• Least Frequently Used (LFU)
 – Replace the cache entry used the least often (in the recent past)
<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>D</th>
<th>A</th>
<th>E</th>
<th>B</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>C</td>
</tr>
</tbody>
</table>

FIFO

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>A</th>
<th>+</th>
<th>B</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>C</td>
</tr>
</tbody>
</table>

MIN

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Clock Algorithm: Estimating LRU

- Periodically, sweep through all pages
- If page is unused, it is reclaimed
- If page is used, mark as unused
- The name of the algorithm is because, logically, all the pages form a circle during sweeps
Nth Chance: Not Recently Used

• Keep an integer for each page
 – notInUseSince: number of sweeps since last use
• Periodically sweep through all page frames
 if (page is used) {
 notInUseSince = 0;
 } else if (notInUseSince < N) {
 notInUseSince++;
 } else {
 reclaim page;
 }
Recap

• MIN is optimal
 – replace the page or cache entry that will be used farthest into the future

• LRU is an approximation of MIN
 – For programs that exhibit spatial and temporal locality

• Clock/Nth Chance is an approximation of LRU
 – Bin pages into sets of “not recently used”
Thrashing

- Thrashing: when system has too small a cache, most of the time is spent on evicting cache entries and copying data to cache
- Resident Set: the pages of a process that are in memory (rather than in disk)
- Thrashing in memory happens when
 - Working Set Size > Resident Set Size
Question

• What happens to system performance as we increase the number of active processes?
 – If the sum of the working sets > physical memory?
 – In this case thrashing will occur, and the system performance will degrade dramatically
Review

• Memory subsystem
 – How to allocate physical memory?
 – How to do address translation?
 – How to speed up access?
 – How to be lazy?
 • Copy-on-write
 • Demand paging
 • Zero-copy I/O (Memory-mapped file I/O)