LOOSECUT: INTERACTIVE IMAGE SEGMENTATION WITH LOOSELY BOUNDED BOXES

Hongkai Yu1, Youjie Zhou1, Hui Qian2, Min Xian3, and Song Wang1

1University of South Carolina, SC 2Zhejiang University, Hangzhou 3Utah State University, UT

ABSTRACT

One popular approach to interactively segment an object of interest from an image is to annotate a bounding box that covers the object, followed by a binary labeling. However, the existing algorithms for such interactive image segmentation prefer a bounding box that tightly encloses the object. This increases the annotation burden, and prevents these algorithms from utilizing automatically detected bounding boxes. In this paper, we develop a new LooseCut algorithm that can handle cases where the bounding box only loosely covers the object. We propose a new Markov Random Fields (MRF) model for segmentation with loosely bounded boxes, including an additional energy term to encourage consistent labeling of similar-appearance pixels and a global similarity constraint to better distinguish the foreground and background. This MRF model is then solved by an iterated max-flow algorithm. We evaluate LooseCut in three public image datasets, and show its better performance against several state-of-the-art methods when increasing the bounding-box size.

Index Terms---Interactive image segmentation; Graph cut; Loosely bounded box

1. INTRODUCTION

Accurately segmenting an object of interest from an image with convenient human interactions plays a central role in image/video editing, object detection and tracking \cite{1, 2, 3, 4}. One widely used interaction is to annotate a bounding box around the object. On one hand, this input bounding box provides the spatial location of the object. On the other hand, based on the image information within and outside this bounding box, we can have an initial estimation of the appearance models of the foreground and background, with which a binary labeling can be performed to achieve a refined segmentation of the foreground and background \cite{5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

However, due to the complexity of the object boundary and appearance, most of the existing methods of this kind prefer the input bounding box to tightly enclose the foreground object. An example is shown in Fig. 1 where the widely used GrabCut \cite{6} algorithm fails when the bounding box does not tightly cover the foreground object. The preference of a tight bounding box increases the burden of the human interaction, and moreover it prevents these algorithms from utilizing automatically generated bounding boxes, such as boxes from object proposals \cite{15, 16, 17}, that are usually not guaranteed to tightly cover the foreground object.

The existing algorithms fail on loosely bounded boxes mainly because of the inaccurate appearance model of the foreground estimated in this case. Many existing algorithms \cite{6} follow an iterative procedure to refine the segmentation. With a loosely bounded box, the initially estimated appearance model of the foreground is inaccurate and it is more likely to see the segmentation being trapped to a local optimum before getting to the global optimum.

Following the classic GrabCut \cite{6}, we develop a new LooseCut algorithm that can better segment the foreground object with loosely bounded boxes. Specifically, in LooseCut we propose two strategies to perform robust segmentation with loosely bounded boxes. First, we propose to add a \textit{label consistency term} to the GrabCut energy function to encourage the consistent labeling to the similar-appearance pixels, either adjacent or non-adjacent. Second, we propose to enforce a \textit{global similarity constraint} in the iterative segmentation procedure to explicitly emphasize the appearance difference between the foreground and background models. Considering the additional energy term and the constraint, we develop an iterated max-flow algorithm for image segmentation. In the experiments, we evaluate the proposed LooseCut algorithm using bounding boxes with varying looseness and compare its performance against several state-of-the-art interactive image segmentation algorithms.

Fig. 1. Sample results from GrabCut and the proposed LooseCut with tightly and loosely bounded boxes.
2. PROPOSED APPROACH

In this section, we first briefly review the classic GrabCut algorithm and then introduce the proposed LooseCut algorithm.

2.1. GrabCut

GrabCut [6] performs a binary labeling to each pixel using an MRF model. Let \(X = \{x_i\}_{i=1}^n \) be the binary labels at each pixel \(i \), where \(x_i = 1 \) for foreground and \(x_i = 0 \) for background. Let \(\theta = (M_f, M_b) \) denotes the appearance models including foreground Gaussian Mixture Model (GMM) \(M_f \) and background GMM \(M_b \). GrabCut seeks an optimal labeling that minimizes

\[
E_{GC} (X, \theta) = \sum_i D(x_i, \theta) + \sum_{i,j \in N} V(x_i, x_j),
\]

where \(N \) defines a pixel neighboring system, e.g., 4 or 8 neighbor connecticity. The unary term \(D(x_i, \theta) \) measures the cost of labeling pixel \(i \) as foreground or background based on the appearance models \(\theta \). The pairwise term \(V(x_i, x_j) \) enables the smoothness of the labels by penalizing discontinuity among the neighboring pixels with different labels. Max-flow algorithm [18] is usually used for solving this MRF optimization problem. GrabCut takes the following steps to achieve the binary image segmentation with an input bounding box: (Step 1) Estimating initial appearance models \(\theta \), using the pixels inside and outside the bounding box respectively. (Step 2) Based on the current appearance models \(\theta \), quantizing the foreground and background likelihood of each pixel and using it to define the unary term \(D(x_i, \theta) \). Solving for the optimal labeling that minimizes Eq. (1). (Step 3) Based on the obtained labeling \(X \), refining \(\theta \) and going back to (Step 2). Repeating this procedure until convergence.

2.2. MRF Model for LooseCut

Following the MRF model used in GrabCut, the proposed LooseCut takes the following MRF energy function:

\[
E(X, \theta) = E_{GC}(X, \theta) + \beta E_{LC}(X),
\]

where \(E_{GC} \) is the GrabCut energy given in Eq. (1), and \(E_{LC} \) is an energy term for encouraging label consistency, weighted by \(\beta > 0 \). In minimizing Eq. (2), we also enforce a global similarity constraint to better estimate \(\theta \) and distinguish the foreground and background. In the following, we elaborate on the label consistency term \(E_{LC}(X) \) and the global similarity constraint.

2.3. Label Consistency Term \(E_{LC} \)

To encourage the label consistency of the similar-appearance pixels, either adjacent or non-adjacent, we first cluster all the image pixels using a recent superpixel algorithm [19] that preserves both feature and spatial consistency. Following a \(K \)-means style procedure, this clustering algorithm partitions the image into a set of compact superpixels and each resulting cluster is made up of one or more superpixels.

Let \(C_k \) indicates the cluster \(k \), and pixels belonging to \(C_k \) should be encouraged to be given the same label. To accomplish this, we set a cluster label \(x_{C_k} \) (taking values 0 or 1) for each cluster \(C_k \) and define the label-consistency energy term as

\[
E_{LC}(X) = \sum_k \sum_{i \in C_k} \phi(x_i \neq x_{C_k}),
\]

where \(\phi(\cdot) \) is an indicator function taking 1 or 0 for true or false argument. In the proposed algorithm, we will solve for both the pixel labels and cluster labels simultaneously in the MRF optimization.

2.4. Global Similarity Constraint

In this section, we define the proposed global similarity constraint. Let \(M_f \) have \(K_f \) Gaussian components \(M^f_j \) with means \(\mu^f_j \), \(j = 1, 2, \cdots, K_f \) and \(M_b \) have \(K_b \) Gaussian components \(M^b_j \) with means \(\mu^b_j \), \(j = 1, 2, \cdots, K_b \). For each Gaussian component \(M^f_j \) in the foreground GMM \(M_f \), we first find its nearest Gaussian component \(M^b_{j(i)} \) in \(M_b \) as

\[
j(i) = \arg \min_{j \in \{1, \cdots, K_b\}} |\mu^f_j - \mu^b_j|.
\]

With this, we can define the similarity between the Gaussian component \(M^f_j \) and the entire background GMM \(M_b \) as

\[
S \left(M^f_j, M_b \right) = \frac{1}{\left| \mu^f_j - \mu^b_{j(i)} \right|},
\]

which is the inverse of the mean difference between \(M^f_j \) and its nearest Gaussian component in the background GMM. Then, we define the global similarity function \(Sim \) as

\[
Sim(M_f, M_b) = \sum_{i=1}^{K_f} S \left(M^f_j, M_b \right).
\]

Similar definition for GMM distance could be found in our previous work [13]. In the MRF minimization to be discussed in the next section, we will enforce the global similarity \(Sim(M_f, M_b) \) to be low (smaller than a threshold) in the step of estimating \(\theta \).

2.5. Optimization

In this section, we propose an algorithm to find the optimal binary labeling that minimizes the energy function defined in Eq. (2), subject to the global similarity constraint. Specifically, in each iteration, we first fix the labeling \(X \) and optimize over \(\theta \) by enforcing the global similarity constraint on
shown in Fig. 2, where pink nodes
\(v_\beta\) nodes that represent the pixels in
\(A\) three pixels in a same cluster, which is represented by the
\(C\) cluster
\(X\) and \(\theta\), we build an undirect graph with auxiliary nodes to
global similarity constraint.

Of the pixels in the same cluster by using this graph structure.
This is different from the goal
\(L\) \(\theta\) cluster. With a fixed
\(E\) on this graph to seek an optimal
\(X\), \(\theta\) and \(f\)
\(M\) \(b\) \(\delta\) or
not. If this constraint is satisfied, we take the resulting \(\theta\) and
continue to the next step of optimization. If this constraint is
not satisfied, we further refine \(M_f\) using the following algo-

1. Calculate the similarity \(S(M_f^1, M_b)\) between each
Gaussian component of \(M_f\) and \(M_b\), by following
Eq. (5) and identify the \(K\) Gaussian components of
\(M_f\) with the largest similarity to \(M_b\).

2. Among these \(K\) components, if any one, say \(M_f^j\), does
not satisfy \(S(M_f^j, M_b) \leq \delta\), we delete it from \(M_f\).

3. After all the deletions, we use the remaining Gaussian
components to construct an updated \(M_f\).

This algorithm will ensure the updated \(M_f\) and \(M_b\) satisfy the
global similarity constraint.

Fixing \(\theta\) and Optimizing over \(X\): Inspired by \[20\]
and \[7\], we build an indirect graph with auxiliary nodes to
find an optimal \(X\) that minimizes the energy \(E(X, \theta)\). In this
graph, each pixel is represented by a node. For each pixel
cluster \(C_k\), we construct an auxiliary node \(A_k\) to represent it.
Edges are constructed to link the auxiliary node \(A_k\) and the
nodes that represent the pixels in \(C_k\), with the edge weight
\(\beta\) as used in Eq. (3). An example of the constructed graph is
shown in Fig. 2 where pink nodes \(v_1\), \(v_5\), and \(v_6\) represent
three pixels in a same cluster, which is represented by the
auxiliary node \(A_1\). All the nodes in blue represent another
cluster. With a fixed \(\theta\), we use the max-flow algorithm \[18\]
on this graph to seek an optimal \(X\) that minimizes the energy
\(E(X, \theta)\).

The graph constructed as in Fig. 2 is similar to the graph
constructed in OneCut \[7\]. However, OneCut seeks to
minimize the \(L_1\)-distance based histogram overlap between the
foreground and background. This is different from the goal
of the proposed algorithm: we seek better label consistency of
the pixels in the same cluster by using this graph structure.

We conduct experiments on three widely used image datasets
– the GrabCut dataset \[6\], the Weizmann dataset \[21, 22\], and
the iCoseg dataset \[23\], and compare its performance against
several state-of-the-art interactive image segmentation meth-
ods, including GrabCut \[6\], OneCut \[7\], MILCut \[9\], and
pPBC \[8\]. As in \[9, 7, 10\], we use Error Rate to evaluate
interactive image segmentation by counting the percentage of
misclassified pixels inside the bounding box. We also take the
pixel-wise \(F\)-measure as an evaluation metric, combining
precision and recall in terms of ground-truth segmenta-
tion. For the number of Gaussian components in GMMs, we
set \(K_b = 5\) and \(K_f = 6\). As discussed in Section 2.5,
\(K = K_f - K_b = 1\). To enforce the global similarity con-
straint, we delete \(K = 1\) component in \(M_f\). The number of
clusters (auxiliary nodes in graph) is set to \(N = 16\). For the
LooseCut energy defined in Eq. (2), we consistently set
\(\beta = 0.01\). The unary term and binary term in Eq. (2)
are the same as in \[6\] and RGB color features are used to construct

3. EXPERIMENTS

\[\text{Algorithm 1 LooseCut} \]
\begin{verbatim}
\textbf{Input:} Image \(I\), bounding box \(B\), \# of clusters \(N\)
\textbf{Output:} Binary labeling \(X\) to pixels in \(I\)
1: Construct \(N\) superpixel-based clusters using \[19\].
2: Create initial labeling \(X\) using box \(B\).
3: repeat
4: Based on the current labeling \(X\), estimate and update \(\theta\) by enforcing \(Sim(M_f, M_b) \leq \delta\).
5: Construct the graph using the updated \(\theta\) with \(N\) auxiliary
nodes as shown in Fig. 2.
6: Apply the max-flow algorithm \[18\] to update labeling
\(X\) by minimizing \(E(X, \theta)\).
7: until Convergence or maximum iterations reached
\end{verbatim}
the GMMs. We set $\delta = 0.02$ in deleting the foreground GMM component to enforce the global similarity constraint. There are two stop conditions for the iteration: the maximum number of 10 iterations is reached or the change of the labeling results is small ($< 0.1\%$). For all the comparison methods, we follow their default settings in their codes.

We construct bounding boxes with different looseness and examine the resulting segmentation. We compute the fit box to the ground-truth foreground and slightly dilate it by 10 pixels along four directions (left, right, up, and down). We take it as the baseline bounding box with 0% looseness and then keep dilating this bounding box uniformly along four directions to generate a series of looser bounding boxes – a box with a looseness L (in percentage) indicates its area increases by L against the baseline bounding box. A bounding box will be cropped when any of its sides reaches the image perimeter.

GrabCut dataset [6] consists of 50 images. Nine of them contain multiple objects while the ground truth is only annotated on a single object, e.g., ground truth only labels one person but there are two people in the loosely bounded box. Such images are not applicable to test the performance with loosely bounded boxes, so we use the remaining 41 images in our experiments. From Weizmann dataset [21, 22], we pick a subset of 45 images for testing, by discarding the images where the baseline bounding box almost covers the full image (cannot have looser bounding boxes). For the same reason, from iCoseg dataset [23], we select a subset of 45 images for our experiment.

Experimental results are summarized in Fig. 3. The segmentation performance degrades when the bounding-box looseness increases for all the methods. LooseCut shows a slower performance degradation than the comparison methods. With increasing looseness, e.g., $L \geq 120\%$, LooseCut shows higher F-measure and lower Error Rate than all the comparison methods. Table 1 reports the values of F-measure and Error Rate of segmentation with varying-looseness bounding boxes on GrabCut dataset. Since MILCut’s code is not publicly available, we only report its results with the baseline bounding boxes from its original paper. Although MILCut performs best when $L = 0\%$, MILCut will fail with a loosely bounded box because it cannot guarantee to generate desirable positive bags along the sweeping lines in a loosely bounded box for its multiple instance learning. Sample segmentation results, with the input bounding boxes of different looseness, are shown in Fig. 4.

Table 1. Segmentation performance on GrabCut dataset with bounding boxes of different looseness.

<table>
<thead>
<tr>
<th>Methods</th>
<th>$L = 0%$</th>
<th>$L = 120%$</th>
<th>$L = 240%$</th>
<th>$L = 600%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-measure</td>
<td>0.916</td>
<td>0.858</td>
<td>0.816</td>
<td>0.788</td>
</tr>
<tr>
<td>Error_rate</td>
<td>7.4</td>
<td>10.1</td>
<td>12.6</td>
<td>13.7</td>
</tr>
<tr>
<td>F-measure</td>
<td>0.923</td>
<td>0.853</td>
<td>0.785</td>
<td>0.706</td>
</tr>
<tr>
<td>Error_rate</td>
<td>6.6</td>
<td>8.7</td>
<td>9.9</td>
<td>13.7</td>
</tr>
<tr>
<td>MILCut</td>
<td>0.910</td>
<td>0.844</td>
<td>0.827</td>
<td>0.783</td>
</tr>
<tr>
<td>Error_rate</td>
<td>7.5</td>
<td>9.1</td>
<td>9.4</td>
<td>12.3</td>
</tr>
<tr>
<td>LooseCut</td>
<td>0.882</td>
<td>0.867</td>
<td>0.844</td>
<td>0.826</td>
</tr>
<tr>
<td>Error_rate</td>
<td>7.9</td>
<td>5.8</td>
<td>6.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Fig. 3. Segmentation performance on datasets of GrabCut(top), Weizmann(middle) and iCoseg(bottom).

Fig. 4. Sample results of interactive image segmentation.

4. CONCLUSION

This paper proposed a new algorithm for interactive image segmentation with loosely bounded boxes. Specifically, we introduced a label consistency term and a global similarity constraint into the MRF model used in GrabCut and then developed an iterative algorithm to solve the new MRF optimization. Experiments results showed the effectiveness of LooseCut against several comparison algorithms in handling loosely bounded boxes.

Acknowledgment This work was supported in part by UES Inc./AFRL-S-901-486-002, NSF-1658987, NSFC-61672376 and NCPTT-P16AP00373. Thanks to Yuewei Lin, Dazhou Guo, Kang Zheng, Kareem Abdelfatah for insightful discussions and suggestions.
5. REFERENCES

