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Markov Chain (MC)

= Finite number of discrete states.
= Probabilistic transitions between states.
= Next state determined only by current.

$S$Rewards$$: S1=10,S2=0



Hidden Markov Model (HMM)

$$Rewards$$: S1=10,S2=0
S1 emits O1 with prob 0.75
S2 emits O2 with prob 0.75




Viarkov Decision Process (MDP)

$$Rewards$$: S1=10,S2=0



artially Observable Markov
ecision Process (POMDP)
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$S$SRewards$$: S1=10,S2=0
S1 emits O1 with prob 0.75
S2 emits O2 with prob 0.75
Don’t Know State




In General...

Markov
Models

Do We Have Control Over the State
Transition ?

YES

Markov

f

Are the Chain
states
completely
observable?

211

MDP vs. POMDP



"OMDP vs. MDP

ats all sources of uncertainty uniformly
s for information gathering actions

. 'Addl onally given (MDP + conditional observation
prob.)

~ = -Hugely intractable to solve optimally



lime for some Formalism
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obabilistic state-action transitions: JYCIERS

vard for each state/action pair:
nditional observation probabilities:




ill always be a limitation, causing “dumb”

actions in some cases (kill kitten)
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DP but sensory measurements
1 knowledge of state

Now let’s take a look at an example



let’s start with MDP

Given list of 0, X can determine Prob.
Of being atS1 =% 0r S3 =1/2

‘ :
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New observation
%2252 1/4 O5

1 S1
15=>S3 1/4

15 S3

As you can see, the number of states can be infinity (extremely large). Using different
Algorithms to reduce it to more manageable numbers.



er Example

~ Fully Observable &
Deterministic Case

] Planning



Fully Observable BUT

‘-,Stochastic Case ﬂ g

Each arrow
corresponds to a
sample control

policy

ns to every
e , state, an
- optimal action

~ We get (something may
look like this)..




artial Observability
Stochastic Case

Can we devise a method for planning
that understands:

(Even though we want to receive 100,

the detour is necessary to gather info)?

Optimal policy to go south, check
sign, and then head to target.
Exclusively goes south to gather info.



What doesn’t work is, to solve these two problems then put
the solution together; for example by averaging!!!!
What works is ......
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Nformation/Belief Space

- the set of physical world states, but
tknow about those states.(Multitude of

e
al % :

e

‘we move around and either reach one of the exits or
' sign, then we know for sure where +100 - belief
e change.

ief state Formally:

e "ability distribution over world states: NQEIYE)
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= Action update rule: REAQAPIIERUCIRIEIRINCY

= Observation update rule: [AGESYCIERIRRVEY



‘ POMDP as Belieft-State MDP

= Equivalent belief-state MDP

o Each MDP state is a probability distribution
(continuous belief state b) over the states of the
original POMDP

o State transitions are products of actions and

observations
b'(s") = p(s'|a. o0, b)=p(o|s', a b)-p(s'|a, b)plo|a,b)

p(o|s'. a. b’)=p(o | 5")
p(s'|a,b)=2 ;s p(s'| a,s) - D(s)

po|a, b)y=2 .5 plo]s) p(s'|a,b)
o Rewards are expected rewards of original
POMDP

R(a, b) =2 r(a, s) - b(s)

s S






ummary for up to now

‘In DPs we apply the very same idea as in
MDPs.
Since the state is not observable, the agent has

~ to make its decisions based on the belief state
which is a posterior distribution over states.

et b be the belief of the agent about the state
under consideration.

= POMDPs compute a value function over belief
space:

Vi) = ymax [r(b,w) + [ Ve a()p( | u,b) db
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