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§ VIO

§ Visual-Inertial Odometry (VIO) combines visual data (from cameras) and 

inertial measurements (from IMUs).

§ Essential for robust and accurate localization and mapping in mobile robotics.

§ Approaches

§ Two main methods: batch nonlinear optimization and recursive filtering.

§ Batch methods minimize error from IMU measurements and visual terms.

§ Recursive algorithms use IMU for state propagation and updates from visual 

observations.

§ Advantages of Batch Approaches

§ Offer repeated linearization, limiting errors.

§ Historically limited by computational resources, now viable for real-time 

operation.

§ Tightly-Coupled vs. Loosely-Coupled Systems

§ Tightly-coupled systems integrate IMU and camera measurements into 

a common problem.

§ Loosely-coupled systems estimate pose independently and fuse IMU 

data separately.
§ Tightly-coupled approaches show higher accuracy in high precision 

VINS.

§ Paper's Focus and Contributions

§ Advocates tightly-coupled fusion and nonlinear optimization.
§ Develops a probabilistic cost function combining visual and inertial 

terms.
§ Emphasizes real-time operation, robustness, and accuracy.
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Challenges in Visual-Inertial Fusion

Contributions of the Paper
§ Evolution from Filtering to Optimization

§ Shift from filtering methods to nonlinear optimization for real-time operation 

and accuracy.
§ Sparsity and Computational Efficiency

§ Emphasis on maintaining structural sparsity in problems for computational 

efficiency.
§ Loosely vs. Tightly-Coupled Systems

§ Trends towards tightly-coupled systems for exploiting full sensor potential.

§ Challenges in managing computational complexity in tightly-coupled 

systems.htly-coupled systems.

§ Keyframe Approach

§ Adoption of keyframes for sparsity preservation.

§ Balancing real-time performance with the benefits of re-linearization.
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§ Robot state variables
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§ Orientation (quaternions) 

§ Velocity

§ Gyro biases

§ Accelerometer biases

§ Robot’s state at timestamp

§ Landmark representation
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OUTLINEStates and Measurements

Error State Representation

§ Use of minimal coordinates for representing perturbations and error states.

§ Linearization around the current state for error propagation.

§ Reprojection error
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State Estimation and Error Minimization
§ Keyframe Selection

§ Chosen based on significant changes in viewpoint or scene content to 

reduce computational load while capturing essential data.

§ Nonlinear Optimization

§ Iteratively refines the trajectory and map estimates by minimizing the 

combined reprojection and inertial errors.
§ Sparsity Preservation

§ Keyframes and landmarks maintain a sparse 

representation, crucial for real-time processing.
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§ State Vector

§ Encompasses the robot's position, orientation, velocity, and sensor biases.

§ Reprojection Error

§ Measures the discrepancy between observed and predicted landmark positions 

in image frames, pivotal for map refinement.
§ IMU Error Term

§ Accounts for the difference between predicted and 

observed sensor readings, enhancing motion estimation 

accuracy.
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Quantitative Performance Results

Notation and Definitions

§ Datasets: 

§ Utilized custom-built stereo visual-inertial hardware across various 

indoor and outdoor settings.

§ Metrics:

§ Trajectory Accuracy: Measured as the deviation from ground truth.

§ Map Precision: Assessed by the fidelity of 3D landmark positions.

§ Computational Performance: Evaluated by the algorithm's execution 

time and resource usage.
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Quantitative Performance Results

Comparative Results and Discussion

• Methodology

§ High Precision

§ Demonstrated superior trajectory tracking with reduced drift 

compared to benchmarks.

§ Robustness in Diverse Conditions 

§ Maintained performance across different environments and motion 

dynamics.

§ Efficiency

§ Achieved real-time operation, with processing times suitable for on-

board implementation.
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Comparative Results and Discussion

§ Benchmark Comparison

§ Outperformed existing methods in accuracy and robustness, with 

detailed statistics.

§ Stereo vs. Monocular

§ Showed the benefits of stereo configuration for depth perception and 

error minimization.

§ Algorithm Improvements

§ Highlighted significant advancements in handling rapid movements 

and low-texture environments.
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