g20: A General Framework for
Graph Optimization

Rainer Kimmerle Giorgio Grisetti
Hauke Strasdat Kurt Konolige
Wolfram Burgard



Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain

P Robot pose Constraint



Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses

| »- A
&y
y 5

=]

P Robot pose Constraint



Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints



The Graph

= [t consists of n nodes X = X1,

= EFach x; is a 2D or 3D transformation
(the pose of the robot at time ¢,)

= A constraint/edge exists between the
nodes X; and x; if... N




Create an Edge If... (1)

= ..the robot moves from x; to x; 1
= Edge corresponds to odometry

O—0O
X \ Xi41

The edge represents the
odometry measurement



Create an Edge If... (2)

= ..the robot observes the same part of
the environment from x; and from x;

X4

Measurement from x; Measurement from X



Create an Edge If... (2)

= ..the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of x; seen from x;

@

X,LQ Yj

Edge represents the position of X jseen
from X, based on the observation




Pose Graph

observation (zij,9%;) —— edge
of X;fromX;

e;; (X, X;)
X error
nodes
according to
the graph

: T
= Goal: x* = aramin el Qe
gX % (] 171)])



The Error Function

= Error function for a single constraint
e; (X, %) = tQV(Z_@-_Z-l(Xi_lXj))

I

measurement

I

x; referenced w.r.t. x;

= Error takes a value of zero if

Zi; = (X;'X;)




Gauss-Newton: The Overall
Error Minimization Procedure

= Define the error function

= | inearize the error function
= Compute its derivative

= Set the derivative to zero

= Solve the linear system

= Jterate this procedure until
convergence



Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x + AX) ~ ez-j(x) + JZ]AX

aeij (X)
ox

with Jz’j —



Jacobians and Sparsity

= Errore;;(x) depends only on the two
parameter blocks x; and X;

e;i(x) = e;;(x;,x;)

= The Jacobian will be zero everywhere
except in the columns of x; and x;




Consequences of the Sparsity

= We need to compute the coefficient
vector b and matrix H:

bl = Zb ZeTQ Ji;
ZHw = 235%%

i
= The sparse structure of J;; will result
in @ sparse structure of H

= This structure reflects the adjacency
matrix of the graph

H



Illustration of the Structure

_ 1T
|

N

—

Non-zero only at x; and x;



Illustration of the Structure

_ 1T

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and Xx;
J

—>




Illustration of the Structure

_ 1T

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and Xx;
J

... and at
the blocks

ijj




Illustration of the Structure
b=> b,

i
I+I+m+| I

i




The Linear System

= \VVector of the states increments:
Ax! = (AX{ Axg AXZ)
= Coefficient vector:
bl = (B?{ bl ... B,,%f)
= System matrix:

(1:111 H12 Hln\
ﬁQl H22 H2n




Building the Linear System

For each constraint:
= Compute error e; = t2v(Z; ' (X; X))

= Compute the blocks of the Jacobian:
de(x;,X;) Oe(x;,x;)

= B, =

J 6Xi J an

= Update the coefficient vector:

A

= Update the system matrix:
H'+ = A[Q;;A; H74+ = A].Q;;B;;




Algorithm

1: optimize(x):

while (lconverged)
(H, b) = buildLinearSystem(x)
Ax = solveSparse(HAx = —b)
X =X+ AX

end

return x




Trivial 1D Example @)@

= TwWo nodes and one observation
(z122)! = (00)

1

2
=zip—(22—721)=1-(0-0)=1
(1 -1)

e1oQ12J12 = (2 — 2)

2 =2
J_{29312:(_2 5 )

—H ,b1o

<
|

N
= N
Il

e 8
HI\)I\)
[

-
o
|

>
<
|

BUT det(H) = 02?2,

7



What Went Wrong?

= The constraint specifies a relative
constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

* One node needs to be “fixed”

4 )

constraint
H:(22 _22>+(C1)8) that sets
B L ) dx;=0
1
Ax = —H “b1o
Ax = (017!

48



2D Pose-Graph of the Intel
Research Lab

https://www.youtube.com/watch?v=8BUhMhk3JBO


https://www.youtube.com/watch?v=8BUhMhk3JB0

