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Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain
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Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses
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Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints



The Graph

= [t consists of n nodes X = X1,

= EFach x; is a 2D or 3D transformation
(the pose of the robot at time ¢,)

= A constraint/edge exists between the
nodes X; and x; if... N




Create an Edge If... (1)

= ..the robot moves from x; to x; 1
= Edge corresponds to odometry
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The edge represents the
odometry measurement



Create an Edge If... (2)

= ..the robot observes the same part of
the environment from x; and from x;

X4

Measurement from x; Measurement from X



Create an Edge If... (2)

= ..the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of x; seen from x;
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Edge represents the position of X jseen
from X, based on the observation




Pose Graph

observation (zij,9%;) —— edge
of X;fromX;

e;; (X, X;)
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The Error Function

= Error function for a single constraint
e; (X, %) = tQV(Z_@-_Z-l(Xi_lXj))
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x; referenced w.r.t. x;

= Error takes a value of zero if

Zi; = (X;'X;)




Gauss-Newton: The Overall
Error Minimization Procedure

= Define the error function

= | inearize the error function
= Compute its derivative

= Set the derivative to zero

= Solve the linear system

= Jterate this procedure until
convergence



Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x + AX) ~ ez-j(x) + JZ]AX

aeij (X)
ox

with Jz’j —



Jacobians and Sparsity

= Errore;;(x) depends only on the two
parameter blocks x; and X;

e;i(x) = e;;(x;,x;)

= The Jacobian will be zero everywhere
except in the columns of x; and x;




Consequences of the Sparsity

= We need to compute the coefficient
vector b and matrix H:

bl = Zb ZeTQ Ji;
ZHw = 235%%

i
= The sparse structure of J;; will result
in @ sparse structure of H

= This structure reflects the adjacency
matrix of the graph

H



Illustration of the Structure
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Illustration of the Structure
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Illustration of the Structure
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Illustration of the Structure
b=> b,
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The Linear System

= \VVector of the states increments:
Ax! = (AX{ Axg AXZ)
= Coefficient vector:
bl = (B?{ bl ... B,,%f)
= System matrix:

(1:111 H12 Hln\
ﬁQl H22 H2n




Building the Linear System

For each constraint:
= Compute error e; = t2v(Z; ' (X; X))

= Compute the blocks of the Jacobian:
de(x;,X;) Oe(x;,x;)

= B, =

J 6Xi J an

= Update the coefficient vector:

A

= Update the system matrix:
H'+ = A[Q;;A; H74+ = A].Q;;B;;




Algorithm

1: optimize(x):

while (lconverged)
(H, b) = buildLinearSystem(x)
Ax = solveSparse(HAx = —b)
X =X+ AX

end

return x




Trivial 1D Example @)@

= TwWo nodes and one observation
(z122)! = (00)
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What Went Wrong?

= The constraint specifies a relative
constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

* One node needs to be “fixed”
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2D Pose-Graph of the Intel
Research Lab

https://www.youtube.com/watch?v=8BUhMhk3JBO


https://www.youtube.com/watch?v=8BUhMhk3JB0

