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What is SLAM?

* Localization: estimating the robot’s location
* Mapping: building a map

 SLAM: computing the robot’s pose and the environment map
simultaneously



Definition of the SLAM problem

* Input:
e Robot’s controls
* Upr = {Uy, Uy, ..., Ur}
* Observations
* 2y =420 2y, .., 21}
* Output
* Poses of the robots
* Xo1 = {Xos X1, Xo, -5 X7}
* Map of the environment
m



Map representations

* Grid-based A
* Occupancy grid with typically fixed resolution {//
/,/“
 Landmark-based L

* The map consists of a set of isolated landmarks
* Alandmark is described, e.g., by a pose location wrt a frame




Landmark-based SLAM

* The robot learns the locations of the landmarks while localizing itself

e State variables

* Robot pose
 Coordinates of each of the landmarks

* The problem involves different aspects
* Landmark extraction
* Data association
* State estimation

State update

Landmark update



First formulation of SLAM

* Smith et al. [1990] present
e Stochastic map: representation for spatial relationships between objects

* A set of procedures for
* Reading information from it
* Building/updating it



Spatial Relationship

* A spatial relationship is represented by the vector of its spatial
variables: e.g., the position and orientation of one, in the frame of
reference of the otherin 2D.
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Uncertain spatial relationship in 2D

* An uncertain spatial relationship is represented by a probability
distribution over its spatial variables, e.g., with a mean and a
covariance matrix.



Stochastic map

* A stochastic map models n uncertain spatial relationships with the
system state vector (all spatial variables wrt world reference frame)
and with the associated system covariance matrix

X1 }AC1 i C(Xl) C(Xl,Xz) C(Xl,Xn)
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Estimating the first two moments of unknown

multivariate

 Consider the non-

orobability distributions

Inear mapping y = f(x)

 approximate using Taylor Series [ g4 o4
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e The first-order estimate of the mean: y =~ f(x).
And the first-order estimate of the covariances: Cly) =
Cly.z) =
Clz.y) =

dfr 7

O fa
Oxn

ofs

dr,,

F,C(x)FTL.
F.C(x,z),
C(z.x)FL.




How to read from the map

* In a real system, it is useful to get the information from the stochastic
map wrt a different frame than the world frame

* e.g., motion of the robot or its observations wrt robot’s frame

* Estimate the resultant relationship between initial and final frames
 Compounding operation
* Reversal operation



Compounding operation

* For example, given ,, and X,;
how do we compute the
resultant relationship x,;?




Compounding operation

* Given two spatial relationships X;; and Xy, calculate the resultant
relationship X;,
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Compounding operation

* The first-order estimate of the mean of the compounding operation is

Xk ~ X?;j Xj;;

e And the first-order estimate of the covariance is
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Reversal operation

* For example, how to
compute X,,? We need first

X720




Reversal operation

* Given X;;, calculate X;;

— 25 COS Q5 — Yij SIN Oy
OXij 237 SIN Q55 — Y COS P

e The estimate of the mean

e The estimate of the covariances
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Composite Operations

* Compounding and reversal operations can be combined to compute
any sequence of relationships

* Recursive head-to-tail  x;=x; ® x;,=x, ® (X;®D X)) =
=Xy @ Xy :(Xij D Xjk) D xy,
 Compounding operation is associative, but not commutative
 Combine compounding and reversal operations (head-to-head)
X; ©X;,~ X; ® (X))

* Tail-to-tail combinations come from observing two things from the
same point: x; = (©X,) ® X



Composite Operations

* To estimate the mean of a complex relationship, just solve the
estimate equations recursively

e e.g., tail-to-tail

JoC(xi5)J5  JoC(xij,; Xik)

) JT %J@ T JT
C(xik, X;i) C(xik) ® C(Xik, xi5)J 5 C(xik) @



General spatial relationship

* For any spatial relationship among world locations

y = g(x)

* The estimated mean and covariance of the relationship

-~

y ~ g(%)
C(y) = GxC(x)GI



Build/update the map

* The map changes when
* An object (e.g., the robot) moves
* New spatial information is obtained

* Assumption

* New spatial information is obtained at discrete moments k and is
instantaneous

* As an object moves, no measurements of external objects are made

Sensor dynamics Sensor
up ['12'1--[:-(:’- extr apo lzlt j.U].l up [].(lt (&




Moving object

* The system dynamics model is given by

xi ) = f(xy ), i)

where

Yk—1 =Uk_1+W

Yk—1 = Uk-1

C(yk-1) = C(w)



Moving object

e Given the estimates of the state vector and variance matrix at state -/

C(yk—1, Xl(:)l) C(yk-1) (.y)




Moving object

* The robot makes an uncertain relative motion

/
Xr = XR P YR

* Thus, only a small portion of the map should be updated
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New spatial information (1)

* New object is added to the map

%(=)
X
£ = Cx)=|__ Cx) | Cxxan)
C(xnt1,X) C(xn+1)
| Xnt1 |
If independent of the estimates of other object Otherwise
locations Xni1 = g(X,2)
3fn—|—1 — i{new in+1 — g(ia 2)
Xnt+1 = Xnew C(xn+1) = GxkC(x)GT + G,C(z)G,
C(xn+1) = C(Xnew) C(xni1,Xi) = C(Xni1,X;i)

C(Xn—l—lyxi) — C(Xnew:xi) =0 C(Xn+1,X) — GXC(X)



New spatial information (2)

* An already-existing object is sensed, thus some constraints are added to the
existing relationships

e The measurement
z = h(x)+ v.

* The expected value of the sensor value and its covariance
z ~ h(x).

C(z) ~ HyC(x)HL + C(v).

where

H. N 1{:)11-;‘,(}{) (XL_))
ox



New spatial information (2)

* For example, if the sensor measures the relative location of the observed
object Z = Xo1 = ©Xp D Xy.

C(x2) C(x9.x7)
C(x1,X2) C(xq)
* Given the sensor model, the Kalman filter equations can be used for updating

the state estimate

C(z) = oJa ] 2Js + C(v)

XEC—I_} = XEC_} + K, [Z;(, — h;((}{ib_})] .

C(x\”) = C(x\7) - KiH C(x\ 7).

1
K, = C(x\ AT {chz(x;—J)Hi + C(v)k} |



Example

a) The robot starts from [0,0,0] coinciding the world reference frame
origin

b) The robot senses object #1.

c) The robot moves.

d) The robot senses a different object #2.
e) Now the robot senses object #1 again.



Step a)

* The stochastic map is initialized



Step b)

* Object #1 is sensed and added to the stochastic map



Step c)

* The robot moves and so the entry related to the robot is updated



Object #1 wrt robot frame

OBJ1, = (6ROBOTy,) ® OBJ1,,
= WORLD,, @ OBJ1,,

World Reference

WORLD
(Robot Starts Here)

Robot Reference

OBll1g

WORLD 5

ROBOT




Step d)

* A new object is sensed, from the robot reference frame.
* The stochastic map is updated accordingly

XR YR
X=X | = 71
| X2 | YR D Z2 |
C(XR) C(XRaxl) C(XRaXQ) C(YR)
C(x) = |C(x;,xRr) C(x,) C(x,,x2) | = 0 C(z,)
_C(XQaXR) C(X27X1) C(x2) 1 _Jl@C(YR)




Sensing Object#?2

» OBJ2,, = ROBOT,, ® OBJ2,

World Reference Robot Reference

WORLD WORLDR




Step e)

» OBJ1,, = ROBOT,, ® OBJ1,

World Reference Robot Reference

WORLD WORLDR




Combining observations (update)

* OJB1y, = OJB1y(new) ® OBJ1,/(old)
* OJBl; = OJBl4(new) ® OBJ1,(old)

World Reference Robot Reference

WORLD WORLDR




Combining observations (update)

* ROBOT,y(new) = OJB1,, ® (60OBJ1})
* ROBOT,, = ROBOT/(new) ® ROBOT,,(old)

World Reference Robot Reference

WORLD WORLDR




Discussion

* Data association?

* Partial observation?

* Non-unimodal Gaussians?

* Complexity?

* What happens 1f data association 1s wrong?
* Dynamic landmarks?

* Can be applied to certain decision-making problems



