First scan matching algorithms

Alberto Quattrini Li

2015-10-22

University of South Carolina

Robot mapping through scan-matching

• Framework for consistent registration of multiple frames of measurements (e.g., scans) [Lu and Milios, 1997, Auton Robot]

Source: [Lu and Milios, 1997, Auton Robot]

Scan

- *Scan*: sequence of *scan points* representing the contour curve of the local environment
 - *Scan point*: represented with polar coordinates
 - A scan is relative to a pose typically stored as Cartesian coordinates

Problem statement

- Input:
 - Starting pose P_{ref} and the associated scan S_{ref}
 - New scan S_{new} from P'_{new}
- Output:
 - Rotation $\boldsymbol{\omega}$
 - translation T

for S_{new} such that S_{new} is aligned with S_{ref}

Source: Courtesy of Noel Welsh

• Characterized by two types of discrepancies

Source: Adaptation of [Lu and Milios, 1997, Auton Robot]

- Random sensing noise
- Occlusion

Scan alignment search overview

- Restrict search to translation and rotation (rigid transform)
- Start with an initial guess from odometry
- Find matching points/outliers
- Minimize a distance function between the matching points of the scans
- Two methods by Lu and Milios [1997, J Intell Robot Syst]

Method 1. - Search/Least-Squares Matching

- Input: $P_{ref}, S_{ref}, P'_{new}, S_{new}$ Output: ω, T
- 1 Project S_{ref} to P'_{new} ;
- 2 Compute the tangent directions on each scan point;
- **3** for $i \leftarrow 1$ to $N_{iterations}$ do
- 4 Select ω from a global search procedure that minimizes the matching distance function;
- 5 For each point on S_{new} find an approximate corresponding point S_{ref} ;
- **6** Find least-squares solution of T;
- **7** Update the rigid transformation;

8 end

Step 1 (Projection of reference scan)

- Change of coordinate system for points in S_{ref}
- Determine each point in S_{ref} is visible from P'_{new}

Step 2 (tangent lines)

• Minimize the error

$$E_{\rm fit} = \sum_{i=1}^{n} (x_i \cos \phi + y_i \sin \phi - \rho)^2$$

where

- *n* neighborhood size
- x_i , y_i scan point
- ρ,ϕ distance from the origin to the line and direction of a normal to the line

Step 2 (tangent lines)

- Discard lines
 - Near corners
 - Upper threshold on E_{fit}
 - Occlusion boundaries
 - Upper threshold on incidence angle $\theta_i-\phi$

Step 4 (find ω) – matching points

• A correspondence pair (matching points P_i , P^*) is accepted only if

$$(R_{\omega}\vec{n}_i)\cdot\vec{n}^* \ge \cos\alpha \land |D_i| \le H_d$$

where

- • R_{ω} is the rotation matrix
- • \vec{n}_i, \vec{n}^* normal directions of the tangent lines
- $ullet lpha, H_d$ thresholds
- D_i expresses P^* translation

Step 4 (find ω)

• Search using the golden section method

$$E_{\text{match}}(\omega) = \frac{1}{n_p + n_o} (\min_T E(\omega, T) + n_o H_d^2)$$

where

- n_p and n_o number of matching pairs of points and outliers, respectively
- H_d^2 is the constant cost of an outlier

Step 5-6 (find *T*)

- Distance between two scans in which we find T given ω

$$E(\omega, T) = \sum_{i=1}^{n_p} (C_i^x T_x + C_i^y T_y - D_i)^2$$

by using the least-squares solution

Note that the coefficients can be derived from the following relationship

$$(R_{\omega}\vec{n}_{1} + \vec{n}^{*})T \approx (R_{\omega}\vec{n}_{1} + \vec{n}^{*})(P^{*} - R_{\omega}P_{1})$$

Summing up

- The rotation search/least-squares algorithm is able to robustly solve for the transformation even in the presence of large initial pose error
- The solution may not be highly accurate

Method 2. - IDC algorithm

Iterative Dual Correspondence

- IDC uses two methods to define matching points:
 - Closest point
 - Matching range point

Closest point rule

- Match two points that are closest together
- Typically informative of translation but not rotation

Matching range point rule

- Match points that have the same distance (range) from their respective poses and are within a predetermined rotation of one another
- Typically informative of rotation but not translation
- Assumes initial poses are close together (*T* is negligible)

Find corresponding points

- Corresponding points P (of S_{new}) and P' (of S_{ref}) are found using the two rules
- Interpolation is necessary as S_{ref} is discrete
 - Interpolation from simply connecting two adjacent points with a line segment (closest point rule)
 - Linear interpolation between two points (matching range point rule)

$$\hat{r} = \frac{r_1 r_2(\theta_2 - \theta_1)}{r_1(\hat{\theta} - \theta_1) + r_2(\theta_2 - \hat{\theta})}$$

Outliers are detected and discarded according to

$$||P'| - |P|| > B_r$$

Minimizing the error

• To find the translation and rotation, minimize the squared distance between the matching points:

$$E_{dist}(\omega, T) = \sum_{i=1}^{n} n |R_{\omega}P_i + TP'_i|^2$$

where:

- ω is the angle
- *T* is the translation
- P_i and P'_i are matching points
- R_{ω} is the rotation matrix for a rotation of angle ω

Summing up

• More accurate solution as long as it converges (experimentally found 15-20 iterations are sufficient)

Experiments

- Robot with a laser range finder mounted on a pan/tilt unit that rotates to have a uniformly distributed scan points
- Simulation
 - Matching process run 1000 times with randomly generated initial pose error and sensing noise in different environments
- Real robot
 - Some test in some environments with ARK robot with Optech G150 laser rangefinder
 - Ground truth not available

Results in simulation

- Results for the two algorithms ran independently
- The IDC algorithm performs better for rotation
- Justifies the use of the combination of two

Residual		First algorithm	Second algorithm
Rotation	σ_{ω}	0.5375°	0.1599°
Translation x	σ_x	0.7652 cm	0.7827 cm
Translation y	σ_y	0.7998 cm	0.6514 cm

Results in simulation

- The algorithms are able to deal with nonpolygonal environments
- As the sensing noise increases, also the residuals standard deviations increase

No	Simulated Environments and	Residual Standard Deviations		
	Maximum Sensing Noise		After Stage 1	After Stage 2
		σ_{ω}	0.2786°	0.0547°
1 o	o noise:	σ_x	$0.3909~{\rm cm}$	$0.3418~\mathrm{cm}$
		σ_y	$0.4531~{ m cm}$	$0.2702~{\rm cm}$
	\frown	σ_{ω}	0.3668°	0.0754°
2	o noise:	σ_x	$0.4150~{\rm cm}$	$0.3592~{\rm cm}$
		σ_y	$0.3886~\mathrm{cm}$	$0.3146~\mathrm{cm}$
		σ_{ω}	0.4414°	0.1876°
3	\cap noise:	σ_x	$1.3449~\mathrm{cm}$	$1.0436~\mathrm{cm}$
		σ_y	$1.5336~\mathrm{cm}$	0.8532 cm
		σ_{ω}	0.3970°	0.1824°
4	\sim noise:	σ_x	$0.8723~{\rm cm}$	$0.9535~{ m cm}$
	2 TIOCHI	σ_y	$\sigma_y = 0.7836 \text{ cm}$	$0.8446~{\rm cm}$
		σ_{ω}	0.6090°	0.3027°
5	o noise:	σ_x	1.2268 cm	$1.2604~\mathrm{cm}$
		σ_y	1.1269 cm	1.1438 cm
6		σ_{ω}	1.1517°	0.6230°
	noise:	σ_x	2.2832 cm	2.5478 cm
		σ_v	2.1961 cm	2.1811 cm

Table I. Statistics of experiments in simulated environments. Maximum initial rotation and translation are set at $\pm 14.3^\circ$ and 50 cm, respectively

Comparison with Cox algorithm

- Cox algorithm [1991, IEEE T Robotic Autom]
 - Iterative closest point
 - Adapted to have a linesegment based map of the environment
- The proposed approach and the Cox algorithm perform relatively good

Residual		Point-Line Algo.	Point-Point Algo.
Rotation	σ_{ω}	0.2277°	0.1992°
Translation x	σ_x	$1.8281 \mathrm{~cm}$	$1.6375~{ m cm}$
Translation y	σ_y	1.2338 cm	$1.3128~\mathrm{cm}$

Results with real data

- Errors in sensing and odometry are not very high, compared to simulation
- The algorithms work in some real indoor environments

Discussion

- Straight corridors?
- Limited field of view?
- What if last scan is misaligned?
- What kind of representation for the map?
- Multiple robots?
- ...