Improved Techniques for Grid Mapping with Rao-Blackwellized PFs

Grisetti et al.

Introduction

Murphy et al. introduced Rao-Blackwellized PFs for SLAM

The main problem of RBPFs

- # of particles to build an accurate map
- Particle Depletion

To fix those issues

To fix those issues

To increase the performance of RBPF:

- Proposal distribution considers accuracy of the sensors
 - Less estimation error leads to less particles
- An adaptive resampling to prevent particle depletion
 - Do the resampling whenever is needed

But what is RBPFs?

Rao-Blackwellized Particle Filters

To estimate $p(x_{1:t}, m \mid z_{1:t}, u_{1:t-1})$ in which

- *m* is map
- $X_{1:t} = X_1 + X_2 + \dots + X_t$ is robot's trajectory
- $Z_{1:t} = Z_1 + Z_2 + \dots + Z_t$ is the observation
- $u_{1:t-1} = u_1 + u_2 + \dots + u_{t-1}$ is the odometry measurement

Rao-Blackwellized Particle Filters(Cntd)

By using factorization:

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t-1}) = p(m \mid x_{1:t}, z_{1:t}).p(x_{1:t} \mid z_{1:t}, u_{1:t-1})$$

- The first part, $p(m \mid x_{1:t}, z_{1:t})$ is nothing but mapping with known poses
- The posterior $p(x_{1:t} \mid z_{1:t}, u_{1:t-1})$ is estimated by applying PF.

What kind of PF is that?

Sampling Importance Resampling(SIR)

Each particle has a potential trajectory of the robot.

As well as, an environment map of its own.

A RBSIR algorithm incrementally uses odom & sensor measurements for mapping.

How?

1- Sampling

Obtaining the next generation $\{x_t^{(i)}\}$ from $\{x_{t-1}^{(i)}\}$ by sampling form

proposal distribution π

 π is usually a probabilistic odometry motion model

2- Importance Weighting

Importance Sampling Principle:

$$W_t^{(i)} = p(x_{1:t}^{(i)} \mid z_{1:t}, u_{1:t-1}) / \pi(x_{1:t}^{(i)} \mid z_{1:t}, u_{1:t-1})$$

Proposal distribution π is in general not equal to target distribution

We can do it in a recursive way(by some assumption for efficiency)

$$W_{t}^{(i)} = W_{t-1}^{(i)} p(z_{t} \mid m_{t-1}^{(i)}, x_{t}^{(i)}).p(x_{t}^{(i)} \mid x_{t-1}^{(i)}, u_{t-1}) / \pi(x_{t} \mid x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1})$$

3- Resampling

Proportional to importance weight

With replacement

4- Map Estimation

The map estimate for each particle

$$p(m^{(i)} | x_{1:t}^{(i)}, z_{1:t})$$

is computed based on its trajectory $x_{1:t}^{(i)}$ and the history of observations $z_{1:t}$

Improved Proposal Distribution

Local approximation of the posterior $p(x_t | m_{t-1}^{(i)}, x_{t-1}^{(i)}, z_t, u_{t-1})$ around the maximum likelihood function.

- 1. Using a scan-matcher to determine the meaningful area
- 2. K Sample in the meaningful area
- 3. Evaluated based on target distribution
- 4. $\mu_t^{(i)} \& \sum_t^{(i)}$ are determined for K sample points

$$egin{array}{lll} \mu_t^{(i)} &=& rac{1}{\eta^{(i)}} \cdot \sum_{j=1}^K x_j \cdot p(z_t \mid m_{t-1}^{(i)}, x_j) \ && \cdot p(x_j \mid x_{t-1}^{(i)}, u_{t-1}) \ \Sigma_t^{(i)} &=& rac{1}{\eta^{(i)}} \cdot \sum_{j=1}^K p(z_t \mid m_{t-1}^{(i)}, x_j) \ && \cdot p(x_j \mid x_{t-1}^{(i)}, u_{t-1}) \ && \cdot (x_j - \mu_t^{(i)}) (x_j - \mu_t^{(i)})^T \end{array}$$

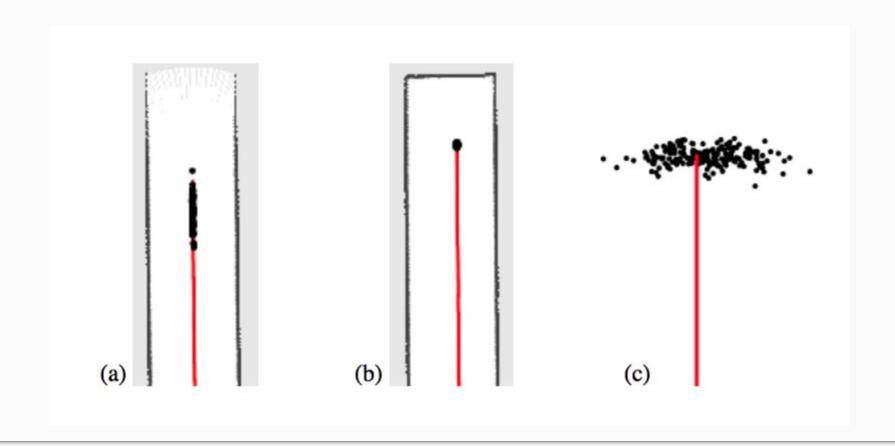
Improved Proposal

Using this proposal distribution weights can be computed as:

$$w_{t}^{(i)} = w_{t-1}^{(i)} \cdot p(z_{t} \mid m_{t-1}^{(i)}, x_{t-1}^{(i)}, u_{t-1})$$

$$= w_{t-1}^{(i)} \cdot \int p(z_{t} \mid m_{t-1}^{(i)}, x') \cdot p(x' \mid x_{t-1}^{(i)}, u_{t-1}) dx$$

$$\simeq w_{t-1}^{(i)} \cdot \sum_{j=1}^{K} p(z_{t} \mid m_{t-1}^{(i)}, x_{j}) \cdot p(x_{j} \mid x_{t-1}^{(i)}, u_{t-1})$$



Adaptive Resampling

Effective Sample Size

$$N_{\text{eff}} = \frac{1}{\sum_{i=1}^{N} \left(\tilde{w}^{(i)}\right)^2},$$

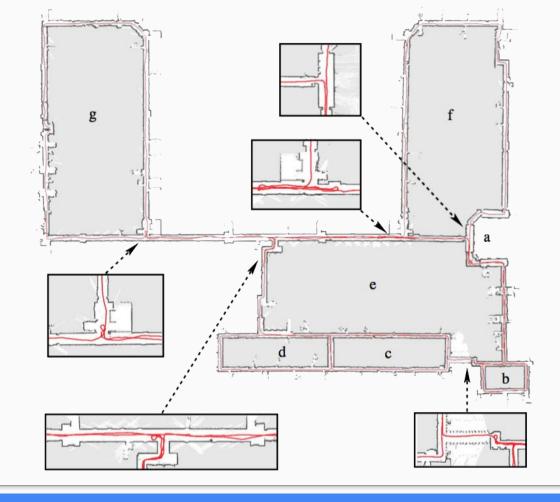
 $N_{\rm eff}$ can be regarded as a measure of the dispersion of importance weights.

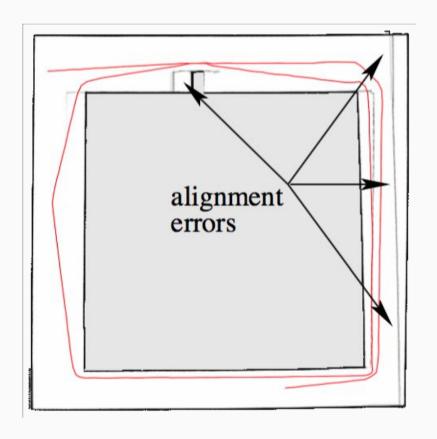
Each time N_{eff} drops below the threshold N/2 resampling is needed.

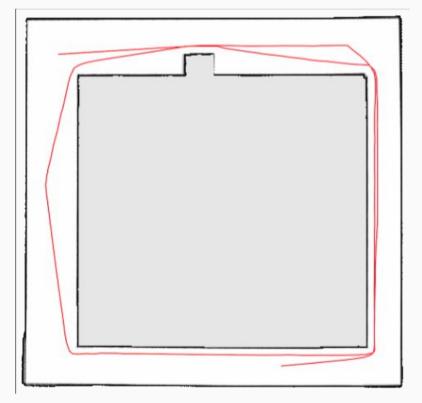
for all $x_i \in \{x_1, \ldots, x_K\}$ do Require: $\mu_t^{(i)} = \mu_t^{(i)} + x_i \cdot p(z_t \mid m_{t-1}^{(i)}, x_i) \cdot p(x_t \mid x_{t-1}^{(i)}, u_{t-1})$ S_{t-1} , the sample set of the previous time step z_t , the most recent laser scan $\eta^{(i)} = \eta^{(i)} + p(z_t \mid m_{t-1}^{(i)}, x_i) \cdot p(x_t \mid x_{t-1}^{(i)}, u_{t-1})$ u_{t-1} , the most recent odometry measurement end for $\mu_t^{(i)} = \mu_t^{(i)}/\eta^{(i)}$ **Ensure:** \mathcal{S}_t , the new sample set for all $x_i \in \{x_1, ..., x_K\}$ do $\Sigma_t^{(i)} = \Sigma_t^{(i)} + (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T \cdot p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_j \mid x_{t-1}^{(i)}, u_{t-1})$ $\mathcal{S}_t = \{\}$ for all $s_t^{(i)} \in \mathcal{S}_{t-1}$ do $\langle x_{+}^{(i)}, w_{+}^{(i)}, m_{+}^{(i)} \rangle = s_{+}^{(i)}$ end for $\Sigma_{t}^{(i)} = \Sigma_{t}^{(i)}/\eta^{(i)}$ // sample new pose // scan-matching $x_{t}^{\prime(i)} = x_{t-1}^{(i)} \oplus u_{t-1}$ $x_t^{(i)} \sim \mathcal{N}(\mu_t^{(i)}, \Sigma_t^{(i)})$ $\hat{x}_{t}^{(i)} = \operatorname{argmax}_{x} p(x \mid m_{t-1}^{(i)}, z_{t}, x_{t}^{(i)})$ // update importance weights $w_t^{(i)} = w_{t-1}^{(i)} \cdot \eta^{(i)}$ if $\hat{x}_{t}^{(i)} =$ failure then end if $x_{t}^{(i)} \sim p(x_{t} \mid x_{t-1}^{(i)}, u_{t-1})$ // update map $w_t^{(i)} = w_{t-1}^{(i)} \cdot p(z_t \mid m_{t-1}^{(i)}, x_t^{(i)})$ $m_t^{(i)} = \text{integrateScan}(m_{t-1}^{(i)}, x_t^{(i)}, z_t)$ else // update sample set // sample around the mode $S_t = S_t \cup \{\langle x_t^{(i)}, w_t^{(i)}, m_t^{(i)} \rangle \}$ for $k = 1, \ldots, K$ do end for $|x_k \sim \{x_i \mid |x_i - \hat{x}^{(i)}| < \Delta\}$ end for $N_{ ext{eff}} = rac{1}{\sum_{i=1}^{N} \left(ilde{w}^{(i)}
ight)^2}$ // compute Gaussian proposal if $N_{\rm eff} < T$ then $\mu_t^{(i)} = (0,0,0)^T$ $\mathcal{S}_t = \text{resample}(\mathcal{S}_t)$ end if

Complexity

Operation	Complexity
Computation of the proposal distribution	O(N)
Update of the grid map	O(N)
Computation of the weights	O(N)
Test if resampling is required	O(N)
Resampling	O(NM)







References

G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, Robotics, IEEE Transactions on, 2007.

Thanks for listening!