
Midterm Project

Due 4/09/2021
The objective of this assignment is for you to become familiar with the basic concepts of Neural
Networks. The recommended platform is jupyter lab.
To refresh your understanding of neural networks, refer to this link:
https://towardsdatascience.com/understanding-neural-networks-19020b758230
For backpropagation explanation, refer to this link:
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Use the notebook at:
https://cse.sc.edu/~yiannisr/590/2021/Midterm-Question.ipynb

In it you will find code providing the skeleton for creating a Neural Network using fully connected
Layers. In particular you will find the following parts:

Some imports
class Layer: abstract class, implemented.
class FCLayer(Layer): Fully connected layer, you need to implement:
 def forward_propagation(self, data):
 def backward_propagation(self, error, lr):
class ActivationLayer(Layer): Activation layer, implemented.
functions for mean square error and tanh activation function, implemented.
class Network: The Neural Network class, you need to implement:

def predict(self, data): This method is used to predict the labels with a trained network.
You need feed all the samples to the network.
def fit(self, x_train, y_train, epochs, learning_rate): This method is used to predict a
label, then use the prediction to calculate the error, which is then backpropagated to
adjust the weights.

Testing code:
 some very basic data for prototyping made for fast execution.
 x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]])

y_train = np.array([[[0]], [[1]], [[1]], [[0]]])

The result of testing should have the form of
epoch 1/1000 error=0.549278
…
epoch 1000/1000 error=0.000278

[array([[0.00093899]]), array([[0.97740932]]), array([[0.97557041]]), array([[-0.00183729]])]

See next page.

Testing code for the MNIST dataset.
(x_train, y_train), (x_test, y_test) = mnist.load_data() Proper separation between train and
test data.

A network is implemented with 3 fully connected layers.

Training:
net.fit(x_train[0:1000], y_train[0:1000], epochs=200, learning_rate=0.1) Use only the first
1000 samples for efficiency and only for 200 epochs.

epoch 1/200 error=0.239762
…
epoch 200/200 error=0.001406

Testing on the first five samples:
out = net.predict(x_test[0:5])

The results will be something like:
predicted values :
[1 2 2 0 0 1 1 0 1 0]
true values :
[0 2 1 0 0 0 0 0 0 0]

Clearly the accuracy of the system is not very good. Not surprising when you have a simple
network, no convolutional layers, only 1000 samples and training for 200 epochs.

3. (Grad Credit)
Try to improve the performance of the network by making it deeper, that is add a few more
layers (fully connected followed by activation). Remember the size of the output of a layer
should be equal to the size of the input of the next layer. Report on the improvement.

Important: Write your own code. I will use plagiarism tools to detect copied code from the
internet.

What to Submit
Please together with your code in the form of a jupyter notebook provide a report discussing
your implementation together with some illustrative examples (screen shots). Ensure that is well
written and formatted. Document your work in images and use captions to describe what each
image displays. Use of LaTeX is encouraged.

