
Assignment 4

1. 50% (Team) Implement three functions translate(double d) and rotate_rel(double angle.

The translate function takes one argument the distance to be travelled in meters. The

relative rotate functions take one argument the angle of rotation. Use the time-needed

multiplied by the commanded velocity to calculate how much you have travel.

In particular ensure you have installed the robot_pose_ekf node, and subscribe both to
odom and odom_combined messages.

Each team should implement different test patterns:

• Straight line (1 m)

• Rotation (relative) (+/- 30)

Then run the robot several times for each pattern and manually estimate distance
travelled and actual rotation. This will provide enough information to characterize the
noise of the motion model.
Report:

• Actual distance travelled (manual measurement), commanded distance
travelled, odom estimate, and odom_combined estimate.

• Actual angle rotated (manual measurement), commanded distance travelled,
odom estimate, and odom_combined estimate.

• Estimate, mean error, and variance.

2. 50% (individual) In class, we saw different components that can be used in a controller:
a) a proportional component (P)
b) a derivative component (D)
c) an integral component (I)

The goal of this assignment is to get you familiar with how to use these type of controller,
and particularly in the context of robotics. As such, you will get a differential drive robot
to perform a line or path following task. A line segment is defined by two points, P1 and
P2. The goal is to get the robot to drive on the line, in the direction P1 → P2. Once you
get near P2, you should either stop, or switch to the following next line segment, if
available. What criterion you use for switching is left to you, but it should be stable: for
example, if you pick a very short distance as a switching criterion, it might not work all the
time (bad!).

In terms of variables for this problem, we have:

• distance x to the wall;

• desired distance xd to the wall

• desired heading of the robot , relative to the wall d;

• the desired rate of turn of the differential drive robot R, (turnrate);

• actual heading of the robot R;

• the fixed forward velocity of the robot V.

In the context of control theory, wall following can be defined as trying to maintain x = xd.

This also implicitly requires d = 0, otherwise the robot would drive away from the wall.

We saw in class how we can use a P-D controller to maintain the trajectory of a robot on
a line, while driving at a constant velocity V. The P part was getting the robot to move
towards the line, and the D part "cued" the controller to reduce the correction as it gets
closer to the goal. Without the D part, the robot was oscillating constantly around the
line. The block diagram for this approach is shown below. The leftmost 0 simply indicate
we want to be at a distance 0 from the wall. The grey box is a simplified model of the
differential drive robot.

Using ROS and stage, write a program that will make the robot follow the closest obstacle.
You can either start the robot fairly close to one obstacle, or write a function that finds
the closest obstacle and then moves towards it until it reaches near xd.

Create a world (modify one of the png files) in such a way to demonstrate limitations of
the two techniques. For example, have a corner that is too narrow, thus requiring the
robot to make a big rotation; introduce a second obstacle that is closer than twice the
desired distance. Discuss the resulting behavior of the two approaches.

Hints

• Direction
If your system diverges, it might be because the commands have the wrong direction.
Double check that by placing the robot near an obstacle, and look how your error and

commands change. If this is the source of your problem, simply multiplying by -1 the
troublesome value.

• Computing angles
Use atan2, not atan.

• Phase Unwrapping
Remember that computations on angles are tricky. After any computation, you might

want to shift the angle between - and by adding or subtracting multiples of 2. Simple
examples of faulty computation if you do not do that, with the correct phase unwrapping
(example given in degrees but the same applies for rad):

o 0-360=-360 (wrong) -360+360 (phase unwrap) = 0 (correct)
o 170 - -180 = +350 (wrong) +170 - 180 (phase unwrap) = -10 (correct)

• Capping the Heading Command

If the robot is far from the wall, the heading command might be more than /2 rad, in
which case the robot will go in the wrong direction, or start making spirals. You might

therefore want to cap this command c to be within +/- /2.

Your assignment should consist of a pdf document that discusses your approach, difficulties and

potential improvements, and a copy of your source code for verification purposes.

	Hints

