
Assignment 1
The objective of this assignment is for you to become familiar with the Robot Operating System
(ROS) software, which you will be using in future assignments to program various algorithms for
robots.

1. Installing and learning ROS
	
	
ROS is officially supported on Ubuntu Linux (www.ubuntu.com), so if you would like to install
ROS on your personal computer, we highly recommend that you install it alongside the version
of Ubuntu, 14.04 LTS / Trusty Tahr (or 15.04). The following assume that you are installing
ROS on Ubuntu.

Please follow these instructions to install ROS; you will want to install the ROS Indigo Igloo (ros-
indigo-desktop-full version.

The Ubuntu Linux computers in Swearinger should all have ROS indigo installed already, so
you may choose to use those machines to solve your assignments. Please notify us if you need
a particular ROS package that is not installed on these machines. If you plan to use these
computers for your assignments, you may skip to part 2.
Please follow the following instructions to install ROS:

http://wiki.ros.org/indigo/Installation/Ubuntu

If you have sufficient hard drive space, ideally you should install ros-indigo-desktop-full version.

The previous ROS installation page is in fact the first item in a comprehensive tutorial on
learning ROS. Please follow through all of the Beginner level tutorials on the
http://www.ros.org/wiki/ROS/Tutorials page. You may skip items 12 and 15, as we will not be
using Python in this course. Read through the Intermediate Level tutorials 1 till 5.

2. Installing and learning ROS stage package
In the first few assignments we will be working with a simulated robot equipped with a horizontal
sweeping laser scanner. Therefore, in addition to installing the core ROS packages, you will
need to install the http://www.ros.org/wiki/stage#http://www.ros.org/wiki/stage stage robot
simulator. Depending on what version of ROS you’ve installed previously, you may already have
this stage package already. To find out, type the following in a terminal:

> rosmake stage

Please, go through the stage tutorials:
http://wiki.ros.org/stage/Tutorials

If you have stage installed, it should report something along the lines of:

> [rosmake] Built 37 packages with 0 failures.

If you do not see this line, (the number of packages may vary) then you must install the stage
package. If you have super-user permissions on your machine, type the following in a terminal:

sudo apt-get install ros-indigo-stage-ros .

Now follow these http://www.ros.org/wiki/stage/Tutorials/SimulatingOneRobot instructions (from
step 3 onwards) to run stage visualization and keyboard control. Keep in mind that you will need
to execute roscore, stageros, teleop_base, and rviz simultaneously using separate terminals.

You will see two robots on the Stage window: a red square and a blue square. Your commands
will affect the blue robot only.

3. Creating a random walk algorithm
Now that you are familiar with the fundamentals of ROS and the stage simulator, you will learn
to create a simple ROS node that will drive the robot around, much like a Roomba robot vaccum
cleaner. More specifically, the robot should move forward until it reaches an obstacle, then
rotate in place for a random amount of time, then move forward again and repeat.

First type the following in a terminal: (for your own benefits, make sure you understand what
each of these lines are doing)

> cd ~/catkin_ws/src

> catkin_create_pkg random_walk roscpp geometry_msgs sensor_msgs
> cd random_walk

Change the CMakeLists.txt by adding these lines:
include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(random_walk src/random_walk.cpp)
target_link_libraries(random_walk ${catkin_LIBRARIES})
add_dependencies(random_walk beginner_tutorials_generate_messages_cpp)

> touch src/random_walk.cpp

Now go into the random_walk/src folder and paste the following code into random_walk.cpp:

<random_walk.cpp>

To build and run this code, type the following in a terminal:

> catkin_make random_walk
> rosrun random_walk random_walk

You should start seeing range values being printed back to you in the terminal. If you use your
mouse to drag the blue square robot in the Stage window, you will see the range values
change.

Your task is now to implement a simple random walk algorithm: if the robot is moving sufficiently
close to an obstacle in front of it, then rotate in-place for a specific duration; otherwise move
forward by default. Do this by filling in the 3 sections labelled TODO in random_walk.cpp.

What to Submit
Please together with your code provide a report discussing your implementation together with
some illustrative examples (screen shots) please enable the trace of the robot so the
trajectory can be seen.

When you copy paste from the pdf file, check for some letters that where mistranslated and
generate syntax errors.
______________________ <random_walk.cpp> ______________________

#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "sensor_msgs/LaserScan.h"
#include <cstdlib> // Needed for rand()
#include <ctime> // Needed to seed random number generator with a time value

class RandomWalk {
public:
 // Construst a new RandomWalk object and hook up this ROS node
 // to the simulated robot's velocity control and laser topics
 RandomWalk(ros::NodeHandle& nh) :
 fsm(FSM_MOVE_FORWARD),
 rotateStartTime(ros::Time::now()),
 rotateDuration(0.f) {
 // Initialize random time generator
 srand(time(NULL));

 // Advertise a new publisher for the simulated robot's velocity command topic
 // (the second argument indicates that if multiple command messages are in
 // the queue to be sent, only the last command will be sent)
 commandPub = nh.advertise<geometry_msgs::Twist>("cmd_vel", 1);

 // Subscribe to the simulated robot's laser scan topic and tell ROS to call
 // this->commandCallback() whenever a new message is published on that topic
 laserSub = nh.subscribe("base_scan", 1, &RandomWalk::commandCallback, this);
 };

 // Send a velocity command
 void move(double linearVelMPS, double angularVelRadPS) {
 geometry_msgs::Twist msg; // The default constructor will set all commands to 0
 msg.linear.x = linearVelMPS;
 msg.angular.z = angularVelRadPS;
 commandPub.publish(msg);
 };

 // Process the incoming laser scan message
 void commandCallback(const sensor_msgs::LaserScan::ConstPtr& msg) {
 if (fsm == FSM_MOVE_FORWARD) {
 // Compute the average range value between MIN_SCAN_ANGLE and
MAX_SCAN_ANGLE
 //
 // NOTE: ideally, the following loop should have additional checks to ensure
 // that indices are not out of bounds, by computing:
 //
 // - currAngle = msg->angle_min + msg->angle_increment*currIndex
 //
 // and then ensuring that currAngle <= msg->angle_max

 unsigned int minIndex = ceil((MIN_SCAN_ANGLE_RAD - msg->angle_min) / msg-
>angle_increment);
 unsigned int maxIndex = ceil((MAX_SCAN_ANGLE_RAD - msg->angle_min) / msg-
>angle_increment);
 float closestRange = msg->ranges[minIndex];
 for (unsigned int currIndex = minIndex + 1; currIndex < maxIndex; currIndex++) {
 if (msg->ranges[currIndex] < closestRange) {
 closestRange = msg->ranges[currIndex];
 }
 }
 ROS_INFO_STREAM("Range: " << closestRange);

 // TODO: if range is smaller than PROXIMITY_RANGE_M, update fsm and rotateStartTime,
 // and also choose a reasonable rotateDuration (keeping in mind of the value
 // of ROTATE_SPEED_RADPS)
 //
 // HINT: you can obtain the current time by calling:
 //
 // - ros::Time::now()
 //
 // HINT: you can set a ros::Duration by calling:
 //
 // - ros::Duration(DURATION_IN_SECONDS_FLOATING_POINT)
 //
 // HINT: you can generate a random number between 0 and 99 by calling:
 //
 // - rand() % 100
 //
 // see http://www.cplusplus.com/reference/clibrary/cstdlib/rand/ for more details
 /////////////////////// ANSWER CODE BEGIN ///////////////////

 /////////////////////// ANSWER CODE END ///////////////////
 }
 };

 // Main FSM loop for ensuring that ROS messages are
 // processed in a timely manner, and also for sending
 // velocity controls to the simulated robot based on the FSM state
 void spin() {
 ros::Rate rate(10); // Specify the FSM loop rate in Hz

 while (ros::ok()) { // Keep spinning loop until user presses Ctrl+C
 // TODO: Either call:

 //
 // - move(0, ROTATE_SPEED_RADPS); // Rotate right
 //
 // or
 //
 // - move(FORWARD_SPEED_MPS, 0); // Move foward
 //
 // depending on the FSM state; also change the FSM state when appropriate
 /////////////////////// ANSWER CODE BEGIN ///////////////////

 /////////////////////// ANSWER CODE END ///////////////////

 ros::spinOnce(); // Need to call this function often to allow ROS to process incoming
messages
 rate.sleep(); // Sleep for the rest of the cycle, to enforce the FSM loop rate
 }
 };

 enum FSM {FSM_MOVE_FORWARD, FSM_ROTATE};

 // Tunable parameters
 // TODO: tune parameters as you see fit
 const static double MIN_SCAN_ANGLE_RAD = -10.0/180*M_PI;
 const static double MAX_SCAN_ANGLE_RAD = +10.0/180*M_PI;
 const static float PROXIMITY_RANGE_M = 2.0; // Should be smaller than
sensor_msgs::LaserScan::range_max
 const static double FORWARD_SPEED_MPS = 1.0;
 const static double ROTATE_SPEED_RADPS = M_PI/2;

protected:
 ros::Publisher commandPub; // Publisher to the simulated robot's velocity command topic
 ros::Subscriber laserSub; // Subscriber to the simulated robot's laser scan topic
 enum FSM fsm; // Finite state machine for the random walk algorithm
 ros::Time rotateStartTime; // Start time of the rotation
 ros::Duration rotateDuration; // Duration of the rotation
};

int main(int argc, char **argv) {
 ros::init(argc, argv, "random_walk"); // Initiate new ROS node named "random_walk"
 ros::NodeHandle n;
 RandomWalk walker(n); // Create new random walk object
 walker.spin(); // Execute FSM loop

 return 0;
};

