CSCE 574 ROBOTICS

Localization
Fundamental Problems In Robotics

• How to Go From A to B? (Path Planning)
• What does the world looks like? (mapping)
 – sense from various positions
 – integrate measurements to produce map
 – assumes perfect knowledge of position
• Where am I in the world? (localization)
 – Sense
 – relate sensor readings to a world model
 – compute location relative to model
 – assumes a perfect world model
• Together, the above two are called SLAM
 (Simultaneous Localization and Mapping)
Localization

- Tracking: Known initial position
- Global Localization: Unknown initial position
- Re-Localization: Incorrect known position
 - (kidnapped robot problem)
Uncertainty

Central to any real system!
Localization

Initial state
detects nothing:

Moves and
detects landmark:

Moves and
detects nothing:

Moves and
detects landmark:
Sensors

• **Proprioceptive Sensors**
 (monitor state of vehicle-propagate)
 – IMU (accels & gyros)
 – Wheel encoders
 – Doppler radar …
 • Noise

• **Exteroceptive Sensors**
 (monitor environment-update)
 – Cameras (single, stereo, omni, FLIR …)
 – Laser scanner
 – MW radar
 – Sonar
 – Tactile…
 • Uncertainty
Bayesian Filter

• "Filtering" is a name for combining data.
• Nearly all algorithms that exist for spatial reasoning make use of this approach
 – If you’re working in robotics, you’ll see it over and over!
• Efficient state estimators
 – Recursively compute the robot’s current state based on the previous state of the robot
What is the robot’s state?

Depends on the robot

- Indoor mobile robot
 - $x=[x, y, \theta]$
- 6DOF mobile vehicle
 - $x=[x, y, z, \varphi, \psi, \theta]$
- Manipulators
 - $x=[\theta_1, \theta_2, \ldots, \theta_n]$ or
 - $x=[x, y, z, \varphi, \psi, \theta]$ pose of end-effector
Bayesian Filter

• Estimate state x from data Z
 – What is the probability of the robot being at x?
• x could be robot location, map information, locations of targets, etc...
• Z could be sensor readings such as range, actions, odometry from encoders, etc...
• This is a general formalism that does not depend on the particular probability representation
• Bayes filter **recursively** computes the posterior distribution:

$$Bel(x_T) = P(x_T \mid Z_T)$$
Derivation of the Bayesian Filter

Estimation of the robot’s state given the data:

\[Bel(x_t) = p(x_t | Z_T) \]

The robot’s data, \(Z \), is expanded into two types: observations \(o_i \) and actions \(a_i \)

\[Bel(x_t) = p(x_t | o_t, a_{t-1}, o_{t-1}, a_{t-2}, \ldots, o_0) \]

Invoking the Bayesian theorem

\[Bel(x_t) = \frac{p(o_t | x_t, a_{t-1}, \ldots, o_0) p(x_t | a_{t-1}, \ldots, o_0)}{p(o_t | a_{t-1}, \ldots, o_0)} \]
Derivation of the Bayesian Filter

Denominator is constant relative to x_t

$$\eta = 1 / p(o_t | a_{t-1}, \ldots, o_0)$$

$$Bel(x_t) = \eta p(o_t | x_t, a_{t-1}, \ldots, o_0) p(x_t | a_{t-1}, \ldots, o_0)$$

First-order Markov assumption shortens first term:

$$Bel(x_t) = \eta p(o_t | x_t) p(x_t | a_{t-1}, \ldots, o_0)$$

Expanding the last term (theorem of total probability):

$$Bel(x_t) = \eta p(o_t | x_t) \int p(x_t | x_{t-1}, a_{t-1}, \ldots, o_0) p(x_{t-1} | a_{t-1}, \ldots, o_0) dx_{t-1}$$
Reminder: Bayes Rule

- Conditional probabilities

\[p(o \land S) = p(o \mid S) p(S) \]

- Bayes theorem relates conditional probabilities

\[p(o \mid S) = \frac{p(S \mid o) p(o)}{p(S)} \]

Bayes theorem

- So, what does this say about \(\text{odds}(o \mid S_2 \land S_1) \)?

Can we update easily?

\[p(a \mid b, c) = \frac{p(b \mid a, c)p(a \mid c)}{p(b \mid c)} \]
Graphical Models, Bayes’ Rule and the Markov Assumption

Actions

Beliefs

Observations

Observable

Hidden

States

Bayes theorem: \(p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} \)

Markov: \(p(x_t \mid x_{t-1}, a_t, a_0, z_0, a_1, z_1, \ldots, z_{t-1}) = p(x_t \mid x_{t-1}, a_t) \)
Derivation of the Bayesian Filter

First-order Markov assumption shortens middle term:

\[Bel(x_t) = \eta p(o_t | x_t) \int p(x_t | x_{t-1}, a_{t-1}) p(x_{t-1} | a_{t-1}, \ldots, o_0) dx_{t-1} \]

Finally, substituting the definition of \(Bel(x_{t-1}) \):

\[Bel(x_t) = \eta p(o_t | x_t) \int p(x_t | x_{t-1}, a_{t-1}) Bel(x_{t-1}) dx_{t-1} \]

The above is the probability distribution that must be estimated from the robot’s data.
Iterating the Bayesian Filter

• Propagate the motion model:

\[
Bel_-(x_t) = \int P(x_t | a_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}
\]

Compute the current state estimate before taking a sensor reading by integrating over all possible previous state estimates and applying the motion model.

• Update the sensor model:

\[
Bel(x_t) = \eta P(o_t | x_t) Bel_-(x_t)
\]

Compute the current state estimate by taking a sensor reading and multiplying by the current estimate based on the most recent motion history.
Bayes Filter

An action is taken

State Space

Initial belief

Posterior belief after an action

Posterior belief after sensing
Representation of the Belief Function

Sample-based representations

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots (x_n, y_n) \]

e.g. Particle filters

Parametric representations

\[y = mx + b \]
Different Approaches

Kalman filters (Early-60s?)
- Gaussians
- approximately linear models
- position tracking

Extended Kalman Filter
Information Filter
Unscented Kalman Filter

Multi-hypothesis (’00)
- Mixture of Gaussians
- Multiple Kalman filters
- Global localization, recovery

Discrete approaches (’95)
- Topological representation (’95)
- Uncertainty handling (POMDPs)
- occas. global localization, recovery
- Grid-based, metric representation (’96)
- global localization, recovery

Particle filters (’98)
- Condensation (Isard and Blake ’98)
- Sample-based representation
- Global localization, recovery
- Rao-Blackwellized Particle Filter
Bayesian Filter: Requirements for Implementation

- Representation for the belief function
- Update equations
- Motion model
- Sensor model
- Initial belief state