Announcement

Quiz #8 is available in Blackboard.
Due date: 11:59pm EST, Thursday, April 10t

Open book and open notes



Notes for Project 2

Draw epipolar lines for
rectifled images optica

F=wW ‘Ew. !

F matrix should be updated

] axis 1 optical axis 2

no rotation between two ,
cameras.

for rectified images, where T

E=S

F = wrect_tswrect_1

courtesy of Dr. Qiang Ji



Today

Model-based image registration

« Active Appearance Model

Image segmentation



Active Appearance Model

Model
SREORR SV
ZAN 7N NV

—

Ap(x) Ai(x) As(x) As(x)
Adapted from Matthews and Baker, “Active Appearance Models Revisited”, [JCV 2004

* For every triangle, an affine transformation is employed to
established the correspondence between the model and the image
« A set of local affine transformation approximates nonrigid

transformation mm) Piecewise affine transformation



Training a Shape Model

Major steps:
« Manually label landmarks for each training image

« Align training shapes by Procrustes Analysis to minimize
the effect of scaling, translation, and rotation

https://commons.wikimedia.org/wiki/File:Procrustes_superimposition.png



Training a Shape Model

Major steps:
« Manually label landmarks for each training image

« Align training shapes by Procrustes Analysis to minimize
the effect of scaling, translation, and rotation

1. Translate each example so that its centre of gravity is at the origin.

Choose one example as an initial estimate of the mean shape and scale so that |x| = 1.
Record the first estimate as x¢ to define the default reference frame.

Align all the shapes with the current estimate of the mean shape.

Re-estimate mean from aligned shapes.

e B W N

Apply constraints on the current estimate of the mean by aligning it with Xg and scaling
so that |x| = 1.

7. If not converged, return to 4.

T. F. Cootes. Statistical models of appearance for computer vision



Training a Shape Model

Major steps:
« Manually label landmarks for each training image

« Align training shapes by Procrustes Analysis to minimize
the effect of scaling, translation, and rotation

 Perform PCA on the aligned shapes

 Retain the major variations



Appearance Model

The appearance of an AAM
 characterizes the texture information of the object
» defined inside the mean shape

An appearance can be represented as a linear combination of
a mean appearance and a set of appearance variations

K
AX) = Ag(x) + 2 2, A;(x) All pixels in sg

e - TST

Ao(x) Ay (x) As(x) As(x)
Adapted from Matthews and Baker, “Active Appearance Models Revisited”, [JCV 2004




FIGURE 12.9: Different face intensity masks generated by moving deformation parameters
to different values. Each block shows the effect of a different parameter; the center of that
block shows the parameter at the mean value (where the mean is taken over numerous
example faces), and the left (resp. right) of the block shows the parameter at mean plus
(resp. minus) three standard deviations. Note how a range of expressions is encoded by
these parameter variations. This figure was originally published as Figure 2 of “Active
Appearance Models,” by T. Cootes, G. Edwards, and C. Taylor, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2001, (c) IEEE, 2001.

D.A. Forsyth accompanying Forsyth and Ponce "Computer Vision - A Modern Approach"



AAM Model Instantiation

A A

Appearance, A Ag + 355094, + 351 A4, — 256 A

AAM Model Instance
M (W(f; p))

Piecewise affine warping
S0 = 5481 +=
SN AN
N _—

Matthews and Baker, “Active Appearance Models Revisited”, [JCV 2004



Registration - AAM Fitting

Goal: obtain optimal shape and appearance parameters to
minimize the appearance difference between the model and the

target image

4 X ) 2
n)%in Aog(x) + Ai A;(x) ‘[I(W(X; p)j
P L ol )

Reconstructed appearance ~ Warped image

» Difference is measured in the same coordinate system — the
mean shape

« Assuming an initial parameter set is known, iteratively update
the parameters



Registration - AAM Fitting

K
Ao() + ) 2 A0 — I(W(x; p))
i=1

K
= [[Ao(x) + z A Aj(x) — I(W(x; p))
i=1

K
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span(Aj)*

span(A;)



Registration - AAM Fitting

2

K
Ao() + ) 2iAi(0) — I(W(x; p))
i=1

= 180G ~1WGE D) 12 gaps +

K
Ao + ) A~ W)

t=1 span(Aj)

Only depends on p depends on A

* Find optimal p by minimizing the first term

* Fixed p, solve 4 by minimizing the second term



Registration - AAM Fitting

Lucas-Kanade (Forward —additive) algorithm:

€ = [|Ap(x) — I(W(x; p + Ap))|2 &

Wix:p + Ap)
(Estimated)

p<p+Ap

I(x)

Figure 5: A schematic overview of the Lucas-Kanade (forwards-additive) image alignment algorithm.
Given current estimates of the parameters p, Lucas-Kanade linearizes the problem and solves for incremen-
tal updates to the parameters Ap that are then added to the current estimates p — p + Ap.



Registration - AAM Fitting

Forwards compositional image alignment
« Warp the image to the model

€ = [|[Ap(x) — I(W(W(x; Ap); p))II?
W(x; p) €« W(x; p) e W(x; Ap)

Inverse compositional image alignment
« Warp the model to the image

e = [|[Ao(W(x; Ap)) — I(W(x; p))]|
W(x; p) € W(x; p) c W(x; Ap) !



Registration - AAM Fitting

W(x; p) o W(x; Ap) W(x; p) o W(x; Ap)~
- (Update) J g .v— W ) *’?ﬁj .| (Update) g
Ao(x) (Estimated) x R Ao(x) (Estimated)
Wi(x; Ap) ¥ W(x; Ap)

.\ W (x; p)

I(W(x; p)) (Known)

. Wix; p)

I(W(x; p)) (Known)

(a) Forwards Compositional (b) Inverse Compositional

Figure 6: (a) A schematic overview of the forwards-compositional image alignment algorithm. Given
current estimates of the parameters, the forwards compositional algorithm solves for an incremental warp
W (x: Ap) rather than a simple update to the parameters Ap. The incremental warp 1s then composed with
the current estimate of the warp. (b) A schematic overview of the inverse-compositional image alignment al-
gorithm. The roles of /(W (x: p)) and Ag(x) are reversed and the incremental warp W (x; Ap) 1s estimated
in the other (inverse) direction. The incremental warp therefore has to be inverted before it is composed with
the current estimate of the warp.

Matthews and Baker, “Active Appearance Models Revisited”, [JCV 2004



AAM Fitting

The Inverse Compositional Algorithm with Appearance Variation

Pre-compute:

3)
(4)
()
(6)

Iterate:

()
(2)
(7)
(8)
®)

Post-computation:

(10)

Evaluate the gradient V Ag of the template Ag(x)
% at (x;0)

Compute the modified steepest descent images vﬂn%

Evaluate the Jacobian

Compute the Hessian matrix using modified steepest descent images

Warp [ with W(x; p) to compute /(W(x;p))

Compute the error image [ (W(x;p)) — Ap(X)

Compute dot product of modified steepest descent images with error image
Compute Ap by multiplying by inverse Hessian

Update the warp W(x;p) «+— W(x;p) o W(x; Ap) !

Compute )

Matthews and Baker, “Active Appearance Models Revisited”, [JCV 2004



[nitial 3it.s 8 it.s 11 1t.s Original Converged

FIGURE 12.10: Active appearance models registered to face images. On the left, the initial
configuration of the model (blurry blob over the face; original face is second from right).
As the minimization process proceeds, the search improves the registration to produce, in
the final converged state, the registration on the right. Once we have this registration, the
location of the vertices of the mesh and the deformation parameters encode the shape of
the face. This figure was originally published as Figure 5 of “Active Appearance Models,”
by T. Cootes, G. Edwards, and C. Taylor, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2001, (¢) IEEE, 2001.
D.A. Forsyth accompanying Forsyth and Ponce "Computer Vision - A Modern Approach"



AAM Challenges

- Initialization
- Insufficient training samples

- Large local deformation



Reading Assignments

[1] T. F. Cootes. Statistical models of appearance for computer
vision. Online technical report available from
, Sept. 2001.

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active
appearance models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(6):681-685, June 2001.

[3] I. Matthews and S. Baker, Active Appearance Models Revisited,
IJCV 2004.


http://www.face-rec.org/algorithms/AAM/app_models.pdf
http://www.face-rec.org/algorithms/AAM/app_models.pdf

Image Resampling & Interpolation

Need to resample the image when
* Rescaling
« Geometrical transformation
« The output image coordinates
are not discrete
Interpolation methods:

* Nearest neighbor
« Fast and simple
* Loss of sharpness
« Artifacts (checkerboard)

« Bilinear
 Bicubic
* Images are sharpest

* Fine details are preserved
« Slow




Image Resampling & Interpolation

Figure from “Digital Image
Processing”, 3" edition, Gonzalez and

Woods

abc

diielE

FIGURE 2.24 (a) Image reduced to 72 dpi and zoomed back to its original size (3692 X 2812 pixels) using

nearest neighbor interpolation. This figure is the same as Fig. 2.20(d). (b) Image shrunk and zoomed using

bilinear interpolation. (c) Same as (b) but using bicubic interpolation. (d)—(f) Same sequence, but shrinking
g. 2.24(d) is the same as Fig. 2.20(c)]. Compare Figs. 2.24(e) and (f),

down to 150 dpi instead of 72 dpi [Fig. 2.2
especially the latter, with the original image in Fig. 2.20(a).



Issues on Image Resampling & Interpolation

Missing points in forward mapping

A hole !

Input Output

Solution: perform a backward mapping

Input Output



Image Interpolation - Nearest Neighbor

F’{g}j} P(1,2)

e I Y

o
P(2,1) P(2,2) wll & Ul &
¥
Projected
Input Qutput

http://www.brockmann-consult.de/beam/doc/help/general/ResamplingMethods.html

Assign each pixel in the output image with the nearest neighbor in the input image.



Image Interpolation - Bilinear

X 5
P({1,1) P({1,2)
: e ay it e e 1 a L L ]
di
i il [ ] ____-________i I:’L -
: I S e *’
d /1——’—/ . . . .
94 1
o] 0]
P(2,1) P(2,2) s
4
Projected
Input Output

http://www.brockmann-consult.de/beam/doc/help/general/ResamplingMethods.html

P=P(1,1)1-d)(1-4d")
+P(1,2)d(1—-d')+P(2,1) «d’
*(1—-d)+ P(2,2)dd’



Image Interpolation - Bicubic

If we know the intensity values, derivatives, and cross derivatives for
the four corners (0,0), (0,1), (1,0), and (1,1), we can interpolate any
point (x,y) in the region x € [0,1],y € [0,1]

P(- 1 -1)  P(-1 0) P(- 1 1) P(-1,2)

* y
P(O -1) P(0,2)

° X
P(1g1) PE.2)

P(2,-1) P(2 0) P(2,1) P(2,2)
° ° ° °

3 3
P(x,y) = z z Qa; jxiyf'/>Need to solve the 16 coefficients

i=0 j=0



Hierarchy of Computer Vision Problems

(- :
— - Computational model of camera
% [ ST ] Radiometry
= l Camera calibration, etc.
o
IE Low-level (Single Image: filters, edges, features, etc.
2 Information ) | Multiple images: stereo vision, motion analysis, etc.
'GEJ Midtevel b (Segmentation and grouping ]
2 [ e _Object tracking, image registration
2 y,
: ]
2
X High-level Object recognition
Information/ Scene understanding
_ Understanding | 1mage interpretation, etc.




Image Segmentation

A process that partitions R into subregions R, R,.,...,R.

Microsoft multiclass segmentation data set




Image Segmentation — Applications

Object localization
Object recognition

Specifically important for medical imaging



Brief Review of Connectivity

Path from p to q: a sequence of distinct pixels with coordinates

(X0, ¥0), (X1, Y1), o, (X, ¥r) _ _
Starting pointp < \ Y } > ending point q
adjacent

p and g are connected: if there isa pathfromptoqgin$S
Connected component: all the pixels in S connected to p
Connected set: S has only one connected component

R is aregion if R is a connected set

Ri and R;j are adjacent if R UR;is a connected set



Image Segmentation

@ | JR =R
i1=1
(b) R isaconnectedset,i =1,...,n
(c) RRNR; =¢,Vi=* |
(d) Q(R)=TRUE
(e) Q(R, W R;)=FALSE for adjacent regions R; and R;

Two categories based on intensity properties:
 Discontinuity — edge-based algorithms
« Similarity — region-based algorithms



Edge-based and Region-based Segmentation

A

a T
= 0

FIGURE 10.1 (a) Image containing a region of constant intensity. (b) Image showing the
boundary of the inner region, obtained from intensity discontinuities. (c¢) Result of . o
segmenting the image into two regions. (d) Image containing a textured region. Processing”, 3" edition, Gonzalez and
(e) Result of edge computations. Note the large number of small edges that are Woods

connected to the original boundary, making it difficult to find a unique boundary using

only edge information. (f) Result of segmentation based on region properties.

Figure from “Digital Image



Brief Review on Simple Edge Detectors

First-order derivative

- E.g., Roberts (2x2), Prewitt (3x3), Sobel (3x3, smooth +
difference)

- Thicker edge
- One operator for one edge direction

Second-order derivative
- Laplacian (3x3)

- Double edge

- Zero-crossing

Common issues:
- Sensitive to Image noise
- Cannot deal with the scale change of the image



Advanced Edge Detection Techniques

« Deal with image noise
« Exploit the properties of image

mmm)  \Work much better for real images

Advanced edge detectors:

2 2 2] X4y’
{x +y°—-20 }e 207
o

 Laplacian of Gaussian (L0G) V*G(xy)=
 Difference of Gaussian (DoG)

x2+y?
20‘%

x2+y?

1 2 1
DOG (X, y) = e i _
(*.y) 2721712 272622

« Canny



Marr-Hildreth Detector (LoG)

Observations:

* Intensity changes are dependent on the image scale

A sudden intensity change (step) causes a peak/trough in thelst
order derivative and a zero-crossing in the 2"d order derivative

« The 2" order derivative is especially sensitive to noise

m=) Smooth the image using a Gaussian filter first before

applying the Laplacian
pplying P _#+y* Laplacian of a

Gaussian G(x,y)=e 2 Ga}ﬁgsian (LoG)
9(x,Y) = V’[G(x, Y) ® f (x, )] =[V'G(x, V)|® f (x,¥)

« Varying o values for scale changes
« Rotation invariant in edge detection



LoG Filtering

g(x,y) =V*G(x,y)® f (x,y)
=V[G(x, y)® f(x,y)]
1. Filter the input image with an nxn Gaussian filter.

2. Compute the Laplacian of the intermediate image
resulting from Step 1.

3. Find the zero-crossings of the image from Step 2.
* opposite signs of the neighbors
 the difference should be significant

Note:
 Window size n>= 60 and n is an odd number



An Example - Edges are 1 Pixel Thick

LoG filtering LoG filtering with T=0

Original

Figure from “Digital Image
Processing”, 3" edition, Gonzalez and

Woods

Zero-crossing with T=0 Zero-crossing with T=4%max
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