#### Today

Areas in computer vision

**Perspective Camera Models** 

#### **Reading Assignments:**

• Chapter 1, David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach",

#### **Related Reference**

 Chapter 3, Olivier Faugeras, "Three Dimensional Computer Vision", MIT Press, 1993

#### **Computer Vision**

Computer Vision is the study of analysis of pictures and videos (using computers) in order to achieve results similar to those as by human.



## **Why Computer-Vision**

#### We are using computer vision techniques every day in our daily life.

#### **Numerous applications**

- 3D/4D Medical image
- Surveillance
- Image retrieval from database/www.ablesw.com/3ddoctor/surgmod.html
  - -Google image
  - -Amazon go
- Self-driving
- <u>Robotics</u>
- and more ...



https://www.castlewallsecurity.co m/home-security-cameras/





https://cars.usnews.com/carstrucks/autonomous-vehicle-levels



https://www.extremetech.com/ta g/boston-dynamics

## **Why Computer-Vision**

The total size of the worldwide computer vision industry was estimated at \$10.6 billion in 2019 (<u>Computer Vision</u> <u>Market Size & Share Report, 2020-2027</u> (<u>grandviewresearch.com</u>), and will increase to \$18.24 billion by 2025 (<u>Machine Vision Market Size Worth \$18.24</u> <u>Billion By 2025 (grandviewresearch.com</u>))

#### **Vision vs Graphics**

Vision: from image to model/perception (analyzing image)

**<u>Graphics</u>**: from model/perception to image (constructing image)

So they are inverse and correlated processes

Vision Graphics

Human vision always see the world with prior model (knowledge) in the mind

Models are usually important in vision

Problem is how to incorporate the model into the image understanding process

#### **Related Areas**

<u>Computer vision</u> overlaps with <u>image processing</u>, and <u>machine learning</u> significantly.

- <u>Image processing</u>: operations are usually performed from image to image including compression, restoration, and enhancement
- <u>Machine learning</u>: development of computer algorithms to automatically learn models from data (experience) and improve prediction/decision making

Image processing and machine learning are important tools used in computer vision.

## **Hierarchy of Computer Vision Problems**



## Some Problems in Computer Vision: Imaging Process

#### Imaging process

- Light reaches surfaces in 3D
- Surfaces reflect light
- Sensor element receives light energy

#### Factors

- Intensity of energy
- Surface roughness
- Surface material

#### Issues

Shadow and occlusions



## **Some Problems in Computer Vision: Perspective Projection**

**Camera model -- Perspective Projection** 

#### 3D←→2D

The right figure is a picture of a cubic prism taken by a camera, isn't it?

#### Yes. How do you know this?



This involves camera model and projection transform. The developed method can be used to decide whether a building picture is a faked one

## **Some Problems in Computer Vision: Color**



**4.1 NEWTON'S SUMMARY DRAWING** of his experiments with light. Using a point source of light and a prism, Newton separated sunlight into its fundamental components. By reconverging the rays, he also showed that the decomposition is reversible.

#### Texture



## Some Problems in Computer Vision: Grouping and Segmentation





What can you do after segmentation?

#### Manipulate by PhotoShop



#### Movie generating- Greenscreen



https://www.youtube.com/watch?v=2lLAc03DaeI

## Perceptual Organization



Wagemans, Johan & Elder, James & Kubovy, Michael & Palmer, Stephen & Peterson, Mary & Singh, Manish & Heydt, Rüdiger. (2012). A Century of Gestalt Psychology in Visual Perception: I. Perceptual Grouping and Figure-Ground Organization. Psychological bulletin. 138, 1172-217, 10.1037/a0029333.

## **Object Recognition from Shape Analysis**







Planet de la completa de la completa

#### **Human Detection/ Localization**









Patrick Gardin / AP



Andy Barron / Reno Gazette-Journal



Sydney Morning Heral

#### **Face Detection/Recognition**



#### **More from a Face**



#### **Stereopsis**

# From 2D to 3D: Our world is 3D, but images are 2D projection from a specific view point, what can we do





#### **Motion and Optical Flow**





#### **Tracking People**





Human activity recognition: surveillance, behavior analysis, gait, etc.

#### **Computer-Vision Resources**

http://resources.visionbib.com/

**OpenCV Library** 

Home – OpenCV

**PyTorch Library** 

**PyTorch** 

#### Next



#### How to get image --- Camera

#### **Digital Image Acquisition**



#### **Basic Optics: Pinhole Cameras**

#### Mount a piece of film in a lightproof box with a single pinhole in it

#### Pinhole focuses light on the film

- Lens degenerates to a point
- One-to-one correspondence between 3D object point and 2D image point
- Only select light ray can go through the hole (the hole is reduced to a point)
- Image on film is flipped upside down



## **Picture Taken by Pinhole Camera**

#### How to make pinhole camera?

<u>http://www.exploratorium.edu/light\_walk/camera\_todo.html</u>



#### **Distant Objects Are Smaller**



- Comparing A and C  $\rightarrow$  with a fixed size, distant objects are smaller
- Comparing A and B  $\rightarrow$  with a fixed distance, larger objects are larger

## **Vanishing Points**

Projection of a point at infinity



## **Parallel Lines Meet at Vanishing Points**

• Horizon H is the intersection of a plane, which is parallel to  $\Pi$  and passes through the pinhole center O, and the image plane



## **Parallel Lines Meet at Vanishing Points**

- The images of parallel lines on the plane  $\Pi$  intersects at a point on the horizon H



## **Parallel Lines Meet at Vanishing Points**

- L is the intersection of  $\Pi$  and a plane, which is parallel to the image plane and passing through the pinhole center
- L has no image on the image plane Horizon Image plane Vanishing point Pinhole center Н **I**<sub>2</sub> Object

## Vanishing Points (cont.)

#### Each set of parallel lines (=direction) meets at a different point

 The vanishing point for this direction

## Good ways to spot faked images

- scale and perspective don't work
- vanishing points behave badly

# Sets of parallel lines on the same plane led to *collinear* vanishing points.

 The line is called the horizon for that plane



## Vanishing Points (cont.)

#### **One-point perspective:**

- The image plane is parallel to two axes of a 3D scene
- the lines are parallel to the image plane are still parallel in the image
- the lines are perpendicular to the image plane are intersected at the vanishing point in the image





#### **Two-point perspective:**

 The image plane is parallel to one axis in the world





#### Slide credit: David Jacobs

#### **Points, Lines, and Planes**

Point: represented as a vector  $\mathbf{p} = [p_1, p_2, \cdots, p_N]$  in Euclidean space  $\mathbb{R}^N$ 

Line:

- Lines in 2D
  - Slope-intercept form: y = ax + b
  - $\mathbf{l} \cdot \mathbf{p} = 0$ , where  $\mathbf{l} = [a, b, c]$ , and  $\mathbf{p} = [x, y, 1]$

#### **Points, Lines, and Planes**

#### Line:

- Lines in 2D
- Lines in general
  - Parametric form:  $\mathbf{p}(t) = \mathbf{p}_0 + t \mathbf{d}$ , where  $\mathbf{p}_0$  is any point on the line and  $\mathbf{d} = [d_1, d_2, \dots, d_N]$  is a unit vector - the direction of the line
    - Parallel lines have the same d with different  $p_0$

• Point-normal:  $\mathbf{m} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$ , where  $\mathbf{p}_0$  is any point on the line and  $\mathbf{m}$  is normal to the line

#### **Points, Lines, and Planes**

Plane:

$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = \mathbf{0}$$

n is the normal vector – perpendicular to the plane

 $\mathbf{p}_0$  is any point on the plane