Topics

Perspective Projection
Coordinate Systems in OpenGL

Your starting coordinates

\(\{x, y, z\}\) object/model coordinates

Object units; could be meters, inches, etc.

Append \(w \) of 1.0

\(\{x, y, z, 1.0\}\) homogeneous model coordinates

Same units

User/shader transforms: scale, rotate, translate, project

\(\{x, y, z, w\}\) homogeneous clip coordinates

Units normalized such that divide by \(w \) leaves visible points between -1.0 to +1.0

OpenGL divide by \(w \)

\(\{x, y, z\}\) normalized device coordinates

Range of -1.0 to +1.0 for \(x \) and \(y \) and 0.0 to 1.0 for \(z \)

OpenGL clipping and viewport/depth-range transform

\(\{x, y\}\) are window coordinates
\(z \) is depth coordinate

\(\{x, y\}\) units are in pixels (with fractions)
\(z \) is in range of 0.0 to 1.0, or depth range

Rasterization
The default projection is orthogonal (orthographic) projection.

Most graphics systems use view normalization:
- All other views are converted to the orthographic view by distorting the objects -- normalization.
- Allows use of the same pipeline for all views.
Oblique Projections

The OpenGL projection functions cannot produce general parallel projections – the oblique projection

It seems the cube has been sheared

Oblique Projection = Shear + Orthogonal Projection
General Shear

- The far and near clipping planes are parallel to the view plane.
- The other four planes are parallel to the projection direction.

$$\tan \theta = \frac{z}{x_p - x}$$

$$x_p = x + z \cot \theta$$

$$y_p = y + z \cot \phi$$

E. Angel and D. Shreiner
Shear Matrix

xy shear (z values unchanged)

\[H(\theta, \phi) = \begin{bmatrix} 1 & 0 & \cot \theta & 0 \\ 0 & 1 & \cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

Projection matrix

\[P = M_{\text{orth}} \ H(\theta, \phi) \]
Shear Matrix

General case:

\[P = M_{\text{orth}} \cdot \text{STH}(\theta, \phi) \]

\[
\text{ST} = \begin{bmatrix}
2 & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
\frac{2}{\text{top} - \text{bottom}} & 2 & 0 & -\frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} \\
0 & 0 & 2 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{align*}
\text{left} &= x_{\text{min}} - \text{near} \cdot \cot \theta \\
\text{right} &= x_{\text{max}} - \text{near} \cdot \cot \theta \\
\text{bottom} &= y_{\text{min}} - \text{near} \cdot \cot \phi \\
\text{top} &= y_{\text{max}} - \text{near} \cdot \cot \phi
\end{align*}
\]

\[x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}} \] are determined by intersections of the four side planes with the near plane
Effect on Clipping

The projection matrix $P = STH$ transforms the original clipping volume to the default clipping volume.
Equivalency

E. Angel and D. Shreiner
Simple Perspective

Center of projection at the origin, projection plane is orthogonal to the z-direction and is parallel to the lens

Projection plane $z = d, d < 0$

E. Angel and D. Shreiner
Perspective Equations

Consider top and side views

\[\frac{x_p}{d} = \frac{x}{z} \quad \Rightarrow \quad x_p = \frac{x}{\frac{z}{d}} \]

\[y_p = \frac{y}{\frac{z}{d}} \]

\[z_p = d \]

E. Angel and D. Shreiner

Nonuniform foreshortening
Perspective Transformation

Perspective transformation is

• Not linear
• Not affine
• Not reversible
Homogeneous Coordinate Form

Consider $P_p = MP_c$ where

A point measured in the clipping frame

The corresponding point measured in the camera frame

$$P_c = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}, \quad M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \Rightarrow \quad P_p = \begin{bmatrix} x \\ y \\ z \\ z / d \end{bmatrix}$$
Perspective Division

Note that $w \neq 1$, so we must divide by w to return from homogeneous coordinates.

This *perspective division* yields the desired perspective equations:

\[
\begin{align*}
 x_p &= \frac{x}{z/d} \\
 y_p &= \frac{y}{z/d} \\
 z_p &= d
\end{align*}
\]
Perspective with OpenGL

View volume is determined by the angle of view (field of view)
Consider a simple perspective with
- the COP at the origin,
- the near clipping plane at $z = -1$, and
- a 90 degree field of view determined by the planes $x = \pm z, y = \pm z$

• Perspective projection matrix is

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \text{ where } d = -1$$
Simple Perspective with OpenGL

A point \(P(x, y, z, 1) \) is projected to a new point \(Q \)

\[
Q = MP = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
z \\
-1 \\
\end{bmatrix}
= \begin{bmatrix}
-x/z \\
-y/z \\
-1 \\
1 \\
\end{bmatrix}
\]
Recall View Normalization

The default projection is orthogonal (orthographic) projection.

Most graphics systems use view normalization:
- All other views are converted to the orthographic view by distorting the objects -- normalization.
- Allows use of the same pipeline for all views.
Perspective Projection and Normalization

We will show the projection can be achieved by view normalization and an orthographic projection.

Consider a matrix

\[
\mathbf{N} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

A point \(P = (x, y, z, 1) \) is transformed to a new point \(P' = (x', y', z', w') \) as

\[
P' = \mathbf{N}P
\]

\[
x' = x \\
y' = y \\
z' = \alpha z + \beta \\
w' = -z
\]
Perspective Projection and Normalization

After perspective division, we can have P' represented in 3D

\[P' = (x'', y'', z'') \]

\[x'' = -\frac{x}{z} \]
\[y'' = -\frac{y}{z} \]
\[z'' = -\left(\alpha + \frac{\beta}{z}\right) \]

Then, apply an orthographic projection along the z-axis, we have

\[Q = \text{M}_{\text{orth}}P' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{x}{z} \\ -\frac{y}{z} \\ -(\alpha + \frac{\beta}{z}) \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{x}{z} \\ -\frac{y}{z} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ -z \end{bmatrix} \]

The result is exactly the same as performing perspective projection directly!
Picking α and β

What are α and β for?

After applying view normalization, the new clipping volume should be transformed to the default clipping volume

- The near plane $z = -\text{near}$ needs to be mapped to $z'' = -1$
- The far plane $z = -\text{far}$ needs to be mapped to $z'' = 1$
- The sides $x = \pm z$ and $y = \pm z$ needs to be mapped to $x'' = \pm 1, y'' = \pm 1$
Normalization Transformation

Original clipping volume

- $z = -x$
- $z = -\text{near}$
- $z = -\text{far}$

Normalized clipping volume

- $z = x$
- $z = 1$

COP

original object

distorted object

projects correctly

$x = -1$

$x = 1$

$z = -1$

E. Angel and D. Shreiner
Picking α and β

$$z'' = -(\alpha + \beta / z)$$

$z = -\text{near}$ will transformed to

$$z'' = -(\alpha + \beta / z) = -(\alpha + \beta / (-\text{near})) = -1$$

$z = -\text{far}$ will transformed to

$$z'' = -(\alpha + \beta / z) = -(\alpha + \beta / (-\text{far})) = 1$$

$$\alpha = \frac{\text{near} + \text{far}}{\text{near} - \text{far}} \quad \text{and} \quad \beta = \frac{2\text{near} \cdot \text{far}}{\text{near} - \text{far}}$$
OpenGL Perspective

Frustum((left,right,bottom,top,near,far))

- Frustum can be either symmetric about the z-axis or asymmetric.
- All are measured in the *camera frame*.

For the symmetric case,

\[\mathbf{M} = \mathbf{M}_{\text{orth}} \mathbf{N} \]
OpenGL Perspective

How do we handle the asymmetric frustum?

Convert the frustum to a symmetric one by performing a shear followed by a scaling to get the normalized perspective volume.

Step 1 Shear: Transform the point \((\frac{\text{left}+\text{right}}{2}, \frac{\text{top}+\text{bottom}}{2}, -\text{near})\) to \((0,0,-\text{near})\)

\[
H(\theta, \varphi) = \begin{bmatrix}
1 & 0 & \cot \theta & 0 \\
0 & 1 & \cot \varphi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

where \(\cot \theta = \frac{\text{left}+\text{right}}{2\text{near}}\) and \(\cot \varphi = \frac{\text{top}+\text{bottom}}{2\text{near}}\)
OpenGL Perspective

After shearing, the resulting frustum is described by

\[x = \pm \frac{\text{right - left}}{-2\text{near}} \quad y = \pm \frac{\text{top - bottom}}{-2\text{near}} \]

Near plane \[z = -\text{near} \]

Far plane \[z = -\text{far} \]
OpenGL Perspective

Step 2: Scaling

\[
S = \begin{bmatrix}
\frac{2\text{near}}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2\text{near}}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Step 3: Perspective normalization \(N\)

The final perspective matrix

\[
M_p = NSH = \begin{bmatrix}
\frac{2\text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{left} + \text{right}}{\text{right} - \text{left}} & 0 \\
0 & \frac{2\text{near}}{\text{top} - \text{bottom}} & \frac{\text{bottom} + \text{top}}{\text{top} - \text{bottom}} & 0 \\
0 & 0 & \frac{\text{near} + \text{far}}{\text{near} - \text{far}} & \frac{2\text{near} \times \text{far}}{\text{near} - \text{far}} \\
0 & 0 & 0 & -1
\end{bmatrix}
\]
Using Field of View: Perspective()

An alternative and more convenient way is to use the field of view

\textbf{Perspective(fovy, aspect, near, far)} often provides a better interface

- \textbf{Fovy} is the angle between the top and the bottom planes
- \textbf{aspect} = \textit{w/h} of projection plane
Using Field of View: Perspective()

Enforce a symmetric frustum

\[left = -right \]
\[bottom = -top \]

\[Frustum() \iff Perspective() \]
\[fovy = 2 \tan^{-1} \frac{top - bottom}{2\text{near}} \]
\[left = \text{aspect} \times bottom \]
\[top = \tan \left(\frac{fovy}{2} \right) \times \text{near} \]