Millimeter wave communication: From Origins to Disruptive Applications Professor Robert W. Heath Jr.

Situation Aware Vehicular Engineering Systems Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University of Texas at Austin

Thanks to sponsors including the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center, the Texas Department of Transportation under Project 0-6877 entitled "Communications and Radar- Supported Transportation Operations and Planning (CAR-STOP)", AT&T, Huawei, Toyota ITC, Honda, NXP, Qualcomm, and the National Science Foundation

Introduction

Cellular networks are connecting everyone (wirelessly)

Future networks will connect things beyond people

Wireless communication

Wireless systems send information using radio frequency signals

Frequency and wavelength

Carrier and bandwidth

Bandwidth is the basic resource in a communication system

© 2017 Robert W. Heath Jr.

The higher the bandwidth, the higher the data rate the system can achieve

Wireless systems can also exploit multiple antennas

© 2017 Robert W. Heath Jr.

What influences the rate experienced by a user?

Bandwidth is the easiest leverage for higher data rates

Millimeter wave spectrum

Spectra below 3 GHz is packed and \$\$/Hz of bandwidth is huge

Lots of potential spectrum available at mmWave for consumer applications currently used for backhaul or legacy systems

First millimeter wave experiments

Transmitter antennas

* Pictures from D. T. Emerson, "The work of Jagadis Chandra Bose: 100 years of millimeter-wave research", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 12, DECEMBER 1997

Radiation receiver

First mmWave experiments were undertaken more than 100 years ago!

Millimeter wave band uses

Consumer challenge #1: device size and cost

OKI 35VII millimeter wave klystron^{1,2}

http://www.oki.com/en/130column/07.html
R. True, "The Evolution of Microwave and Millimeter Wave Tubes", 2012

0.87 x 0.70mm!

60 GHz amplifier, 2008³

[3] M. Varonen, Mi. Kärkkäinen, M. Kantanen, and K. A. I. Halonen, "Millimeter-Wave Integrated Circuits in 65-nm CMOS," IEEE Transactions on Solid State Circuits, 2008

Until recently, mmWave devices were expensive, bulky, or made with expensive semiconductor processes

Consumer challenge #2: propagation effects

© 2017 Robert W. Heath Jr.

Consumer challenge #3: antennas become too small

Small antennas do not capture as much of the impinging wave

Making mmWave viable for consumers

Idea I:An antenna array at the receiver fixes shrinkage

highly directive reception leads to array gain

Large antenna array captures the same amount of energy avoiding the misconception that losses increase with frequencies

TX

Idea 2: An antenna array at the transmitter focuses energy

highly directive transmission

highly directive reception

Beamforming at the transmitter adds additional array gain and reduces caused interference

The antenna arrays are small at mmWave

Samsung Galaxy S7*

Mockup of a Galaxy with mmWave**

Base station may have 64 to 512 antennas

Mobile station may have 4 to 32 antennas

[1] From https://www.ifixit.com/Teardown/Samsung+Galaxy+S7+Teardown/56686

 [1] From https://www.mxtt.com/reardown/samsung-Galaxy-sylenceded
[2] W. Roh et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," in *Communications Magazine, IEEE*, vol.52, no.2, pp.106-113, 20 February 2014

Idea 3: Analog processing

Forming beams using analog components reduces the amount of RF hardware and subsequent baseband processing required

Idea 4: Beam training

Beam training finds the best beam pair over the air

Commercial mmWave applications

Sony wearable HDTV *

Talon Multi-Band Wi-Fi Router

Standard	Bandwidth	Rates	Approval
WirelessHD	2.16 GHz	3.807 Gbps	Jan. 2008
WirelessHD 1.1	2.16 GHz	4 x 7.138 Gbps	Jan. 2010
IEEE 802.11ad	2.16 GHz	6.76 Gbps	Dec. 2012

Zyxel AeroBeam HDTV kit *

Dell Laptop *

Current standards for personal networks and WiFi support arrays and beam training

* http://www.wirelesshd.org/consumers/product-listing/

Bringing mmWave to 5G and beyond

Taking advantage of MIMO processing

Hybrid precoding enables multi stream transmission with low power, but requires changes in conventional MIMO algorithms

Reducing resolution in data converters

Higher levels of quantization dramatically reduce power consumption, but require new algorithms that can deal with extra distortion

Overcoming different types of blockage

Alternatives to conventional beam training

Simultaneously sampling from multiple spatial directions

Exploit the fact that there are a few good paths via compressive sensing

Adaptive reconfiguration in high mobility

Leverage out-of-band information, multi-band communication, position, sensors, and machine learning to reduce overheads during beam reconfiguration

Disruptive applications

5G cellular networks will exploit mmWave

Vehicle-to-everything (V2X) communication

Communications for aerial vehicles

High data rate networking between manned and unmanned aerial Current solutions for A2X do not support most applications

People (going beyond smart phones)

Virtual reality: high-resolution multi-view video in real-time

Wearable networks: multiple communicating devices in and around the body (>5 according to market trends)

Augmented reality: real-time overlay of information

High data rates are required for virtual and augmented reality and wearable networks

Connected robots

Questions?

www.profheath.org www.utsaves.org www.wncg.org www.ece.utexas.edu

MmWave communication prototyping

State of the art research platform

Sensors and communication equipment for V2X

Three different type vehicles