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Efficient Selective Frame Discard
Algorithms for Stored Video Delivery
Across Resource Constrained Networks

V
ideo delivery from a server to a client across a network is an important component of
many multimedia applications. While delivering a video stream across a resource
constrained network, loss of frames may be unavoidable. Under such circumstances, it is

desirable to find a server transmission schedule that can efficiently utilize the network resources
while maximizing the perceived quality-of-service (QoS) at the client. To address this issue, in this
paper we introduce the notion of selective frame discard at the server and formulate the optimal
selective frame discard problem using a QoS-based cost function. Given network bandwidth and
client buffer constraints, we develop an OðN logNÞ algorithm to find the minimum number of
frames that must be discarded in order to meet these constraints. The correctness of the algorithm
is also formally established. We present a dynamic programming based algorithm for solving the
problem of optimal selective frame discard. Since the computational complexity of the optimal
algorithm is prohibitively high in general, we also develop several efficient heuristic algorithms for
selective frame discard. These algorithms are evaluated using JPEG and MPEG video traces.
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Introduction

The playback of stored video over a network is required
by several applications such as digital libraries, distance
learning and collaboration, video and image servers and
interactive virtual environments. Stored video typically
has high bandwidth requirements and exhibits signifi-
cant rate variability [1–3]. This is particularly the case
when variable bit rate encoding schemes are used. In a
network where resources such as the network bandwidth
*Author to which all correspondence should be addressed.
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and buffering capacity are constrained, it is a major
challenge to design an efficient stored video delivery
system that can achieve high resource utilization while
maximizing users’ perceived quality-of-service (QoS).

Video smoothing techniques [4–11] have been pro-
posed for reducing the network bandwidth requirement
of bursty video streams by taking advantage of client
buffering capabilities. Similar techniques have also been
developed when network bandwidth is constrained
instead of the client buffer [12–15]. In reality, however,
both network bandwidth and client buffering capacity
# 2001 Academic Press
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are likely to be limited. Under such circumstances, there
may not be a feasible server transmission schedule that
can deliver video streams to clients without incurring
loss of data. Instead of being denied service, clients may
choose to receive lower quality video streams with
occasional frame losses. This may arise, for example, in
the case of constant-bit-rate (CBR) service, where for a
client with a limited buffer, the network may not have
sufficient bandwidth to support the peak rate of a
smoothed video stream, or in the case of renegotiated
CBR (RCBR) service [16], where bandwidth renegotia-
tion fails in the middle of a video transmission.

When delivering a video stream across a resource-
constrained network, a naive approach at the server may
attempt to transmit each frame with no awareness of the
resource constraints. As a result the network may drop
packets causing frame losses. In addition, the client may
be forced to drop frames that arrive too late for
playback. This results in wastage of network bandwidth
and client buffer resources. In this paper, we introduce
the concept of selective frame discard 2 (SFD) at the
server which pre-emptively discards frames in an
intelligent manner by taking network constraints and
client QoS requirements into consideration. The pro-
posed server selective frame discard has two advantages.
First, by taking the network bandwidth and client buffer
constraints into account, the server can make the best
use of network resources by selectively discarding
frames in order to minimize the likelihood of future
frames being discarded, thereby increasing the overall
quality of the video delivered. Second, unlike frame
dropping at the network or the client, the server can also
take advantage of application-specific information such
as information content of a frame and inter-dependen-
cies, in its decision in discarding frames. As a result, the
server optimizes the perceived quality of service at the
client while maintaining efficient utilization of the
network resources.

In this paper, we develop various selective frame
discard algorithms for stored video delivery across a
network where both the network bandwidth and the
client buffer capacity are limited. We begin by formulat-
2In this paper we assume that frames are basic application-level
data units for server selective discard. This assumption is not
necessary. The algorithms developed in the paper do not hinge
on this assumption. In practice, other (preferably) application-
level data units such as slices, blocks or macro blocks in JPEG
and MPEG can also be used as the basis for server
selective discard.
ing the problem of optimal selective frame discard using
the notion of a cost function. The cost incorporates the
QoS metrics of clients. Given network bandwidth and
client buffer constraints, we develop an O ðN logN Þ
algorithm to find the minimum number of frames that
must be discarded in order to meet these constraints.
The correctness of the algorithm is also formally
established. We then present a dynamic programming
based algorithm for solving the problem of optimal
selective frame discard. This algorithm computes a
transmission schedule that optimizes the client QoS
based on a given cost function. Since the computational
complexity of the optimal algorithm is prohibitively
high in general, we also develop several efficient heuristic
algorithms which take both resource constraints and
cost into consideration. These algorithms are evaluated
using JPEG and MPEG video traces. Through the
performance evaluation, we find that the proposed
minimum cost maximum gain heuristic algorithm yields
near-optimal performance for both JPEG and MPEG
encoded video.

The rest of this paper is organized as follows. In the
next section, we briefly discuss related work. The section
following describes the problem setting and formulates
the optimal selective frame discard problem. The
minimum frame discard algorithm is described and its
correctness is then proved. An optimal dynamic
programming based selective frame discard algorithm
is then presented. Then, several efficient selective frame
discard heuristics are introduced and a performance
evaluation based on JPEG traces is presented. These
algorithms are extended to MPEG in the penultimate
section. The last section concludes the paper.

Related work

Rate adaptation and control for compressed video has
been extensively studied, in particular, in the context of
joint source and channel adaptive encoding (see, e.g.,
[17–23]). For example, in [19,23], the problem of finding
an optimal transmission schedule with leaky bucket
constraints is studied with some form of cost functions.
In [18, 20, 21], video rate adaptation through quantiza-
tion parameter adjustment over networks with feed-
back-based congestion control mechanisms is discussed.
These techniques are mostly designed for live video
transmission, and may not be suitable for delivery of
stored video, for a number of reasons (e.g., absence of
encoders at a stored video server, or the processing
overhead/delay incurred).



Figure 1. Overview of the problem setting.
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Packet discarding schemes which take advantage of
application specific information have been used in many
different contexts. For example, in [24] a frame-induced
packet discarding scheme at the network level is
introduced. In this scheme, upon detection of loss of a
threshold number of packets belonging to a video frame,
the network attempts to discard all the remaining
packets of that frame. Similarly, the continuous media
toolkit (CMT) [25, 26] also uses application-specific
information to assign priority in packet discarding.
Our problem setting, however, is considerably different
from these existing studies. In designing efficient server
selective frame discard algorithms, we leverage applica-
tion-specific information to optimize the client QoS
while at the same time taking both network bandwidth
and client buffer constraints into account.

Problem Formulation

In this section we provide an overview of the stored
video delivery system and motivate the notion of
selective frame discard at the server for a resource
constrained network. The idea of a cost function is
introduced to incorporate a QoS metric and is used to
formulate the selective frame discard problem.

Figure 1 depicts a server transmitting a stored video
stream to a client across a network. The video data is
retrieved from the disk subsystem into the server
memory and moved onto the network as per some
server transmission schedule. The client has a buffer
which can be used for the work ahead of video data by
the server. The client plays back the video frames
periodically as determined by the frame rate. Each video
frame has a deadline constraint associated with it. Since
the frames are being played back at a periodic rate, the
frame has to be available at the client when the decoding
process attempts to display it. If the frame is not
available, the playback is paused, resulting in a playback
discontinuity.

We assume a network environment where a fixed
amount of network bandwidth can be reserved for a
video stream (i.e., the CBR service). However, the
network resource may be constrained (this constraint is
referred to as rate constraint). Furthermore, the buffer
resource at a client may also be constrained (this
constraint is referred to as client buffer constraint). In
such a resource constrained system, there may not be
sufficient resources to ensure the continuous playback of
the video at the client. While the rate constraint
regulates the amount of data that can be transmitted
in one time unit, the client buffer constraint limits the
amount of work ahead by the server into the client
buffer. In the presence of both rate and buffer
constraints, a feasible server transmission schedule
which satisfies both constraints simultaneously may
not exist. Hence in these circumstances, frame dropping
is unavoidable.

A naive approach at the server may attempt to
transmit each frame with no perception of the resource
constraints. This may cause packet loss and delay in the
network or buffer overflow at the client. As a result, the
client may receive incomplete frames which cannot be
played back. Also, the client may be forced to drop a
frame if it arrives late. The system resources consumed
by these dropped frames are effectively wasted.

Selective frame discard aims at optimizing the utiliza-
tion of the network resources by pre-emptively discard-
ing frames at the server. A frame is transmitted only if it
can meet its playback deadline; Otherwise, the frame is
discarded thereby increasing the likelihood of other
frames meeting their playback deadlines. By effectively
utilizing the resources, selective frame discard improves
the playback continuity.

In formulating the selective frame discard problem,
we consider a discrete-time model at the frame level.
Each time slot represents the unit of time for playing
back a video frame. For simplicity of exposition, we
assume zero startup delay, i.e., the time the server starts
video transmission and the time the client starts play-
back is the same. We also ignore the network delay.
Table 1 summarizes the notation we introduce in this
section.



Table 1. Notation

N : Length of video in frames.
fi : size of ith frame.
B : client buffer capacity for storing unplayed frames.
C : network bandwidth.
N : set of all frames, i.e., {1, . . ., N}
S : a subset of frames, i.e., S �N
AðSÞ : a transmission schedule w.r.t. set S
AiðSÞ : cumulative data sent by the server over [1, i ]
aiðSÞ : amount of data sent by the server in slot i
DðSÞ : underflow curve w.r.t set S
DiðSÞ : cumulative data consumed by the client over [1, i ]
UðSÞ : overflow curve w.r.t set S
UiðSÞ : maximum cumulative data that can be received by the client over [1, i ]
BiðSÞ : buffer occupancy at the end of time slot i.
ÂðSÞ : greedy transmission schedule w.r.t set S
ÂiðSÞ : cumulative data sent by the server over [1, i] according to the greedy schedule
âi(S) : amount of data transmitted in slot i under ÂðSÞ
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Consider a video stream with N frames. For
i 2 N ¼ f1; . . . ;Ng, the size of the ith frame is denoted
by fi. Let C denote the bandwidth of the network (i.e.,
server transmission rate is limited by C per unit of time),
and B is the client buffer size. For S � N , 1fj2Sg is the
indicator function: 1fj2Sg ¼ 1 if j 2 S and 0 if j 62 S.
Let DðSÞ ¼ fD0ðSÞ;D1ðSÞ; . . . ;DNðSÞg where DiðSÞ ¼Pi

j¼0 fj 1fj2Sg, and let UðSÞ ¼ fU0ðSÞ;U1ðSÞ; . . . ;UNðSÞg
where UiðSÞ ¼ DiðSÞ þ B. We refer to DðSÞ as the
(client) buffer underflow curve with respect to S, and
UðSÞ as the (client) buffer overflow curve with respect to
S. A server transmission schedule AðSÞ associated with
S is a schedule which only transmits frames included in
S, namely, frame i is transmitted under AðSÞ if and only
if i 2 S. Let aiðSÞ be the amount of video data
transmitted during time slot i, i ¼ 1; . . . ;N. In accor-
dance with the notation for DðSÞ and UðSÞ, the schedule
AðSÞ is denoted by AðSÞ ¼ fA0ðSÞ;A1ðSÞ; . . . ;ANðSÞg
where A0ðSÞ ¼ 0 and AiðSÞ ¼

Pi
j¼0 ajðSÞ. Examples of

DðSÞ, UðSÞ and AðSÞ are shown in Figure 2.

A server transmission schedule AðSÞ is said to be
feasible with respect to S if and only if for
i ¼ 0; 1; . . . ;N, (1) rate constraint is not violated, i.e.,
aiðSÞ � C; (2) buffer constraint is not violated, i.e.,
AiðSÞ � UiðSÞ; and (3) playback constraints are not
violated, i.e, DiðSÞ � AiðSÞ. In other words, a transmis-
sion schedule is feasible if it lies within the buffer
underflow curve DðSÞ and the buffer overflow curve
UðSÞ, having slope no more than C (see Figure 2 for an
illustration). A set S � N is said to be feasible if and
only if there exists a feasible transmission schedule AðSÞ
with respect to S. For a given pair of rate and buffer
constraints ðC;BÞ, we denote the collection of all feasible
sets by SFDðC;BÞ.

Given a schedule AðSÞ, the buffer occupancy at the
end of time slot i (namely, immediately after frame i has
been retrieved from the client buffer if i 2 S) is denoted
by BiðSÞ. BiðSÞ satisfies the following recurrence rela-
tion:

BiðSÞ ¼ maxfmin fBiÿ1ðSÞ þ aiðSÞ;Bg ÿ fi1fi2Sg; 0g;

where B0ðSÞ ¼ 0:

If Biÿ1ðSÞ þ aiðSÞ > B, the buffer overflow occurs at
time i. If Biÿ1ðSÞ þ aiðSÞ5fi, then buffer underflow
occurs at time i. Clearly for a feasible schedule,
BiðSÞ ¼ Biÿ1ðSÞ þ aiðSÞ ÿ fi1fi2Sg.

Associated with each S, we define a special schedule
ÂðSÞ, referred to as the greedy transmission schedule with
respect to S. Under ÂðSÞ, the amount of data
transmitted in time slot i, i ¼ 1; . . . ;N, is given by
âiðSÞ ¼ minfBÿ Biÿ1ðSÞ;CÞ, where B0ðSÞ ¼ 0 and
BiðSÞ ¼ Biÿ1ðSÞ þ âiðSÞ ÿ fi1fi2Sg. Hence, ÂðSÞ ¼
fÂ0ðSÞ; Â1ðSÞ; . . . ; ÂNðSÞg, where ÂiðSÞ ¼

Pi
j¼0 âjðSÞ. It

is clear that ÂðSÞ transmits at the rate C whenever
possible without overflowing the buffer (see Figure 2 for
an example). In other words, it attempts to keep the
buffer as full as possible. By definition, ÂðSÞ always lies
below the buffer overflow curve UðSÞ. Hence ÂðSÞ is
feasible if it stays above the underflow curve DðSÞ, i.e., if
Âi � DiðSÞ, i ¼ 0; 1; . . . ;N.



Figure 2. Relation of D(S), U(S) and a server transmission
schedule A(S): (a) An infeasible schedule; (b) a feasible
schedule.
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The greedy schedule ÂðSÞ has the following property,
the proof of which is straightforward.

Proposition 1: For any S � N , if AðSÞ is a schedule
conforming to the rate constraint, then AiðSÞ � ÂiðSÞ,
i ¼ 0; 1; . . . ;N.

Since ÂðSÞ bounds the amount of data that can be
transmitted from the above, any feasible transmission
schedule has to stay below ÂðSÞ. Hence if ÂðSÞ is not
feasible, then any other schedule AðSÞ is not feasible. As
a result, for any S � N , S is a feasible set if and only if
ÂðSÞ is feasible with respect to S.

For a given pair of rate and buffer constraints ðC;BÞ,
there are in general more than one feasible set. For
example, trivially S ¼ ; is always a feasible set.
Obviously the perceived quality of the playback at the
client would depend on the frames transmitted by the
server. It is likely that the greater the number of frames
dropped, the lesser the perceived video quality. In
addition, consecutive losses of frames or a cluster of lost
frames in near proximity would have a more pro-
nounced impact on the perceived video quality than
dispersed losses of frames. In order to reflect the
perceived video quality at the client, we introduce the
notion of a cost function, �ðSÞ, to quantify the
‘‘desirability’’ of different feasible sets. Such a function
associates a certain cost with each discarded frame. The
cost of a feasible set �ðSÞ is the cost associated with
the frames that are not part of the set. For an
appropriately defined cost function, �ðSÞ should reflect
the perceived quality of playing back the set S. Thus,
minimizing the cost is equivalent to optimizing the QoS
at the client.

For a given cost function �, the optimal selective
frame discard problem therefore is to find a feasible set
S� which minimizes the associated cost �ðS�Þ, formally:

Find a set S� such that S� 2 SFDðC;BÞ and

�ðS�Þ ¼ minf�ðSÞ : S 2 SFDðC;BÞg

S� is referred to as an optimal feasible set with respect
to �.

Upper Bound on the Size of Feasible Sets

Before we address the problem of finding an optimal set
that minimizes a given cost function, we first consider a
more fundamental question:

What is the minimum number of frames to be
discarded so that the remaining frames that are
transmitted by the server can meet their respective
playback time under the known network bandwidth
(rate) and client buffer constraints? Or in other words,
what is the largest possible cardinality of any feasible set
S 2 SFDðC;BÞ?

The solution to this question is not only of interest in
its own right, but, as we will see, also sheds light on the
design of efficient selective frame discard algorithms in a
later section. In this section, we first present an
algorithm for solving this problem, and then establish
its correctness. This algorithm is referred to as the
minimum frame discard (in short MINFD) algorithm. In



Figure 3. The minimum frame discard (MINFD) algorithm.
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the next section, we present the details of the MINFD
algorithm for video streams encoded using an intra-
frame encoding scheme such as JPEG, where there is no
inter-frame dependence among the frames. Extension of
the MINFD algorithm to handle inter-frame depen-
dence is then discussed in the section immediately
following, using the MPEG encoding scheme as an
example.

The MINFD Algorithm for Intra-Frame Encoded Video

Consider a video stream encoded using an intra-frame
encoding scheme such as JPEG. Following the notation
introduced in the previous section, fi denotes the size of
the ith frame of the video stream. Let C denote the
available network bandwidth (i.e. the rate constraint)
and B, the size of the client buffer.

The following observations play a key role in the
development of the MINFD algorithm.

1. As long as the buffer constraint is not violated,
always try to send as much data as possible (i.e.,
send at rate C)

2. Whenever the buffer is full, delay transmission
until the buffer is no longer completely filled and
then resume transmission at rate C. Note that it is
never necessary to discard frames because of buffer
overflow.

3. Whenever a playback deadline cannot be met,
either the current frame or an earlier frame must be
discarded. This is because the total size of the
currently included frames is more than that can be
transmitted using the available bandwidth subject
to the buffer constraint. In deciding the frames to be
discarded, we should choose those that would
optimize the likelihood of the deadlines of future
frames being met.

The first two observations state that we should follow
the greedy schedule in transmitting the video data.
Based on the third observation, we devise a strategy
which discards the frame that maximizes the buffer
occupancy at the time when a playback deadline is
violated. In Theorem 3, we show that this strategy is
optimal in the sense that it minimizes the total number
of frames discarded.

The algorithm is presented in pseudo-code in Fig-
ure 3. It proceeds in stages, i ¼ 0; 1; . . . ;N, and
constructs a feasible set S# iteratively.
At stage 0 (line 2 in the algorithm), we start with
S# ¼ ;. At this point, the buffer occupancy B0 ¼ 0. The
variable i0 is used to keep record of the most recent
buffer full point if any, and is initialized to 0. At any
stage i (lines 3–16), i ¼ 1; . . . ;N, we follow the greedy
schedule Â, and transmit as much data as possible,
namely, âi ¼ minfC;Bÿ Biÿ1g (lines 4–6). If the buffer
is full at this point, set i0 ¼ i. Otherwise (lines 7–16), we
check to see whether the playback deadline of frame i is
met by the greedy schedule Â with respect to the current
feasible set S# (line 8). If Biÿ1 þ C5fi; the playback
deadline of frame i is violated, a frame needs to be
discarded. In order to decide which frame to discard, for
each j, 1� j � i, we introduce the notion of gain in the
buffer occupancy at time i if frame j is discarded. We
denote this gain by �i

j; its definition will be given shortly.
The frame discarded, say, frame k, is thus the one which
yields the largest gain, namely, �i

k ¼ max1�j�i �i
j. This

is done in lines 9–11.

Formally, let S#iÿ1 denote the feasible set constructed
at stage i ÿ 1. Recall that DjðS#iÿ1Þ, UjðS#iÿ1Þ ¼
DjðS#iÿ1Þ þ B and ÂjðS#iÿ1Þ represent the buffer underflow
curve, buffer overflow curve and the amount of data
transmittedbythegreedyscheduleupto time jwithrespect
to S#iÿ1. For j ¼ 1; . . . ; i ÿ 1, define

ri
j ¼ min

j�l�iÿ1
fUlðS#iÿ1Þ ÿ ÂlðS#iÿ1Þg

¼ min
j�l�iÿ1

fDlðS#iÿ1Þ þ Bÿ ÂlðS#iÿ1Þg: ð1Þ



Figure 4. Effect of discarding a frame j on D, U and Â:
(a) fj5ri

j ; (b) fi�r
i
j .
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ri
j represents the minimal difference between the buffer

overflow curveUðS#iÿ1Þ and the greedy schedule ÂðS
#
iÿ1Þ in

the time interval ½ j; i ÿ 1�. Intuitively, it is the maximal
amount that we can shift the segment ½ j; i� of UðS#iÿ1Þ
downwards towards ÂðS#iÿ1Þwithout crossing ÂðS

#
iÿ1Þ (see

Figure 4).

Now we are in a position to define �i
j.

�i
J ¼

fi;
minf fj ;ri

jg;

�
j ¼ i
j ¼ 1; . . . ; i ÿ 1:

ð2Þ

We now show that �i
j is the gain in the buffer occupancy

at time i if frame j is discarded. More precisely,

Biÿ1ðS#iÿ1\fjgÞ ¼ Biÿ1ðS#iÿ1Þ þ �
i
j : ð3Þ
This is shown pictorially in Figure where the two cases:
(a) fj � ri

j and (b) fj > ri
j are depicted. As a result of

discarding frame j, the segment ½ j þ 1; i ÿ 1� of the new
buffer overflow curve UðS#iÿ1\f jgÞ and underflow curve
DðS#iÿ1\f jgÞ are the original ones [UðS#iÿ1Þ and DðS#iÿ1Þ]
shifted fj amount downwards. Consider the case where
fj � ri

j. This can only occur if j > i0 where i0 is the last
time before i the buffer is full. The greedy schedule can
transmit exactly the same amount of data as the original
schedule, i.e., ði ÿ 1ÿ jÞC, during the time interval
½ j þ 1; i ÿ 1�. Therefore, (3) holds at time i ÿ 1. On the
other hand, if fj > ri

j, the amount of data transmitted by
the greedy schedule during the same interval is only
ði ÿ 1ÿ jÞC ÿ ð fj ÿri

jÞ. This is because the buffer
becomes full at some point. Hence the greedy schedule
needs to stop transmission for a duration of ð fj ÿri

jÞ=C
time. Thus, (3) also holds at time i ÿ 1. Note that in
either case, we have:

Âiÿ1ðS#iÿ1\f jgÞ ÿ ÂjðS#iÿ1\f jgÞ

¼ Âiÿ1ðS#iÿ1Þ ÿ ÂjðS#iÿ1Þ ÿ ð fj ÿ �
i
jÞ: ð4Þ

From (1), ri
j ¼ 0 for any j � i0. Therefore, discarding

any frame before time i0 will result in zero gain, i.e.,
�i
j ¼ 0. In other words, discarding any frame before the

last buffer full point will not help meet the playback
deadline of frame i. This is the reason that in line 9 of
the algorithm in Figure 3, we only search in the range of
½i0 þ 1; i� for a frame to discard. Let k, i0 þ 1� k� i be
such that �i

k ¼ maxi0þ1�j�i �i
j. Hence, discarding frame

k yields the maximal gain at time i. Denote this maximal
gain by max�i, i.e., max�i ¼ �i

k. As �i
i ¼ fi, we have

max�i � fi. Hence from (3)

Biÿ1ðS#iÿ1\fkgÞ � Biÿ1ðS#iÿ1Þ þ fi:

Therefore, if k 6¼ i, discarding frame k will help meet the
playback deadline of frame i. As a result of discarding
frame k from S#iÿ1 and including frame i at stage i, i.e.,
setting S#i :¼ S#iÿ1 [ fig\fkg (lines 12–13), we have:

BiðS#i Þ ¼ Biÿ1ðS#iÿ1Þ þ C þmax�i ÿ fi: ð5Þ

Note that the above equation also holds when k ¼ i.

In lines 14–16 of the algorithm, the buffer occupancy
Bi is updated using (5), and i0 is set to k� if discarding k
results in a full buffer at time k�, where k� is the point
where the minimum in (1) is attained. If the deadline of
frame i is met, it is included in S#i by setting
S#i :¼ S#iÿ1 [ fig (line 18). The algorithm stops after
stage N and outputs the set S#.



Figure 5. Sequence of MPEG frames with a GOP of size 12. Frame Pij/Bij refers to jth P/B frame in the ith GOP. (a) Playback
order with dependecies (e.g. B17 depends on P13 and I2); (b) decoding order.
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The feasible set S#i constructed at stage i of the
MINFD algorithm has the following important prop-
erty, the proof of which can be found in the technical
report version of this paper [27].

LEMMA 2: Let S be any feasible set, i.e.,
S 2 SFDðC;BÞ. Then

jS#i j � jS \ f1; 2; . . . ; igj ð6Þ

where j � j denote the cardinality of a set.
Moreover, for any j ¼ 1; 2; . . . ; i; if

jS#i \ f1; . . . ; jgj ¼ jS \ f1; . . . ; jgj; ð7Þ

then BjðS#i Þ � BjðSÞ:

Intuitively, Lemma 2 states that the number of frames
included in the (partial) feasible set S#i constructed at
stage i is at least as large as the number of frames (up to
time i) that are included in any other feasible set.
Moreover, among all feasible sets that discard the same
number of frames up to time j, S#i maximizes the buffer
occupancy at time j. Hence, S#i maximizes the chance of
future frames to meet their playback deadlines. As a
consequence of this lemma, the transmission schedule
S# produced by the MINFD algorithm results in the
minimum number of discarded frames for any cost
function, or equivalently, jS#j is maximized.

THEOREM 3: Let S# be the feasible set produced by
the MINFD algorithm. Then

jS#j ¼ max jSj : S 2 SFDðC;BÞf g: ð8Þ

By using a clever data structure for maintaining and
updating the gain �i

j, we can design an OðN logNÞ
algorithm to construct S#. Due to space limitations, we
will not describe it here.

The MINFD Algorithm for MPEG Encoded Video

The MINFD algorithm described in Figure 3 can be
extended to handle video streams with inter-frame
dependencies such as those encoded using the MPEG
encoding scheme. In this section, we illustrate how to
modify the MINFD algorithm to handle inter-frame
dependencies using MPEG as an example.

The MPEG standard defines three types of frames: I
frames, P frames and B frames. I frames are coded
autonomously, while P frames are coded with respect to
the previous I or P frame. B frames use both previous
and future I or P frames as a reference. The MPEG
standard also defines a group-of-pictures (GOP) as a
consecutive sequence of frames (pictures) containing a
single I frame, which is the first frame of the group, and
upon which the rest of the frames in the group depend.
An example of GOP of size 12 is IBBPBBPBBPBB (see
Figure 5(a) for an illustration). Because of the inter-
frame dependencies, discarding an I frame results in the
loss of an entire GOP. Similarly, discarding a P frame
results in the loss of the P and B frames that depend
on it.

Another complication arising from these inter-frame
dependencies is that the client playback order differs
from the client decoding order. Figure 5 illustrates this
key difference between the playback order and decoding
order for a sequence of MPEG frames with a GOP of
size 12. Both the playback order and the decoding order
play a role in determining whether a frame can be played
back in time or not. For example, whether a B frame can
be played back depends not only on its own playback
deadline (which is determined by the playback order),
but also on the in-time arrival of its future reference
frame (which is determined by the decoding order).

We now describe how to extend the MINFD
algorithm to handle the inter-frame dependencies in
MPEG, using a GOP of size 12 as an example. For
simplicity of exposition, we assume that a sequence of
MPEG frames are transmitted from the server to the
client in their decoding order. We proceed by consider-
ing transmission of all or part of the frames in a GOP at
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each stage. Note that because the last two B frames in a
GOP of size 12 depend not only on the previous P
frame, but also on the I frame of the next GOP, these
two B frames need to be treated specially: they are only
included for consideration of transmission in the next
GOP (after the I frame of the next GOP, on which they
depend), but they are eligible for consideration of
discarding in the current GOP. This special treatment
will be further expanded on, as we sketch the extended
MINFD algorithm for MPEG video below.

Suppose we have a MPEG video sequence of frames
with N GOPs3 of size 12. At stage i, i ¼ 1; 2; . . . ;N, we
consider transmission of the ith GOP,
Ii½Biÿ1;7Biÿ1;8�Pi;1Bi;1Bi;2Pi;2Bi;3Bi;4Pi;3Bi;5Bi;6 ðBi;7Bi;8Þ.
Here, either of the last two B frames from the previous
GOP, Biÿ1;7Biÿ1;8, is included for consideration of
possible transmission with the ith GOP provided that
the following two conditions are met: 1) i� 2 and its
previous reference frame, i.e., the last P frame from the
GOP, Piÿ1;3, is included for transmission in the previous
GOP at stage i ÿ 1; and 2) it is not selected for
discarding in the previous GOP at stage i ÿ 1. The last
two frames in the current GOP are included here for
consideration of discarding only. They will be consid-
ered for transmission in the next GOP at stage i þ 1,
because their future reference frame, the I frame in the
next GOP, has to be transmitted before them.

For the frames included in the ith GOP (excluding
Bi;7Bi;8), Ii½Biÿ1;7Biÿ1;8�Pi;1Bi;1Bi;2Pi;2Bi;3Bi;4 Pi;3Bi;5Bi;6,
we check to see whether they can be transmitted using
the greedy schedule in such a manner that all of them
can be played back in time at the client. If this is the
case, we move to the next stage and consider transmis-
sion of the i þ 1th GOP. If this is not the case, then one
or more frames must be discarded due to the network
bandwidth constraint. Note that no more than 14
frames needed to be discarded at each stage. This is
because in the worst case we can always discard all the
frames in the current (i.e., the ith) GOP including Bi;7Bi;8

and move to the next stage. Now the question is to find
the minimum number of frames, mn

i , 1� mn
i � 14, that

must be discarded at stage i so that some of the frames
in the ith GOP (excluding Bi;7Bi;8) can be transmitted
using the greedy schedule in such a manner that these
frames can be played back in time at the client (we refer
to this condition as the maximum playback constraint).
3The algorithm described below does not require the video
sequence to have a fixed GOP pattern.
Furthermore, the mn
i discarded frames are chosen in

such a manner that the buffer gain at the end of the ith
GOP is maximized (we refer to this condition as the
maximum buffer gain criterion).

To find mn
i , we start with mn

i ¼ 1. Among all the
frames that have been included for transmission from
the previous stages and the frames in the current GOP,
we check to see whether we can find a single frame to
discard so that the maximum playback constraint can be
satisfied. (Frames that are eligible to discard as a single
frame include all the B frames and those ‘‘isolated" P or
I frames whose dependent B and P frames have already
been discarded in the previous stages.) If the maximum
playback constraint can be satisfied by discarding a
single frame, we choose to discard the one among all the
eligible single frames that meets the maximum buffer
gain criterion. If the maximum playback constraint
cannot be satisfied by discarding a single frame, we
proceed to consider mn

i ¼ 2. More generally, consider
the case mn

i ¼ m, 1� m� 14. Among all the frames
that have been included for transmission from the
previous stages and the frames in the current GOP, we
check to see whether we can choose exactly m frames
(including the dependent frames of any chosen frame) to
discard so that the maximum playback constraint can be
satisfied. If this cannot be done, we proceed to consider
mn

i ¼ mþ 1. If this can be done, we choose those m
frames to discard such that the maximum buffer gain
criterion be met. Note that this procedure stops when
mn

i ¼ 14, as we can always discard the current GOP to
meet the maximum playback constraint. Thus we can
always find 14 frames to discard such that the maximum
buffer gain criterion is met.

Based on a similar argument as used in Theorem 3, it
can be shown that the modified MINFD algorithm
described above produces a feasible transmission
schedule that minimizes the total number of frames
discarded. The time complexity of the algorithm is
polynomial in N, the number of GOPs in an MPEG
video stream. However, the exponent of the polynomial
is in the order of the GOP size.

The modified MINFD algorithm for MPEG video
minimizes the total number of frames discarded. A
variation of this MINFD algorithm can also be devised
using a different metric — one that, first of all,
minimizes the total number of I frames discarded, then
the total number of P frames discarded, and then the
total number of B frames discarded. In other words, a P
frame is discarded only if it cannot be included by



Figure 6. Transitions between the states for the optimal
algorithm OPTFD.
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discarding any number of B frames. Similarly, an I
frame is discarded only if it cannot be included by
discarding any number of B and P frames. Using this
metric, we can ensure that each GOP has at least its I
frame preserved whenever possible, thereby ensuring
certain level of perceived video quality at the client.

An Optimal Selective Frame Discard Algorithm

In this section we describe a general optimal algorithm
for selective frame discard, which can be used to
determine an optimal feasible set for a given cost
function. For simplicity of exposition, the algorithm is
described in detail for video streams without inter-frame
dependence such as JPEG video streams. Modifications
needed to handle inter-frame dependence for encoding
schemes such as MPEG are presented at the end of the
section.

Recall that a feasible set is considered optimal with
respect to a given cost function, if it has the least cost
among all feasible sets in SFD. We describe an
algorithm, referred to as OPTFD, which constructs an
optimal feasible set for any given cost function. The
algorithm uses the standard dynamic programming
technique to find the optimal schedule by formulating
the problem as a shortest cost path problem.

The algorithm proceeds in stages. We refer to the
collection of transmission sets constructed at each stage
as the system. At each stage, the system could be in one
of several possible states which are determined by the
buffer occupancy, resulting from a particular transmis-
sion set, and the state information required by the cost
function. Each of these states can lead to new states in
the next stage as shown in Figure 6. Each transition
incurs a certain amount of cost, which depends on the
cost function being used. Forward search in dynamic
programming can be used [10,23] to find the shortest
cost path from stage 0 to N, and thus determine the
optimal feasible set. Table 2 summarizes the notation
used in this section. For simplicity, we drop the
reference to a specific transmission set S from the
notation.

At each stage i, i ¼ 0; 1; . . . ;N, a tuple ðBi;WiÞ
represents a state with which a feasible set Si is
associated, where Bi is the buffer occupancy of the
system at the state, and Wi, represents the information
needed for computing the transition cost from state
ðBi;WiÞ to a state ðBiþ1;Wiþ1Þ at the next stage. Wi
depends on the specifics of the cost function. For
example, for a simple cost function which assigns a unit
cost to each discarded frame, Wi ¼ ;. This is because
under this simple cost function, the transition cost is
determined solely by whether the current frame is
discarded or not. For a general cost function, Wi may
be determined by a subset of the associated set Si.
Clearly, two different sets Si and S0i may be mapped to
the same state at stage i. This is the case if BðSiÞ ¼ BiðS0iÞ
and WiðSiÞ ¼WiðS0iÞ. Let Gi denote the set of all states
at stage i. The set of states Gi can be regarded as a two
dimensional mesh, where each point corresponds to a
state determined by Bi and Wi. The cost of state ðBi;WiÞ
is denoted by CðBi;WiÞ.

For a given state, ðBi;WiÞ, Niþ1ðBi;WiÞ denotes the set
of states that can be attained at stage i þ 1 with no
constraint violation, namely, neither buffer overflow nor
buffer underflow occurs. The set of states Giþ1 at state
i þ 1 can be stated as Giþ1 ¼ [ðBi ;WiÞ2Gi

Niþ1ðBi;WiÞ.
Given the buffer occupancy Bi at stage i, the buffer
overflow can be avoided by controlling the amount of
data transmitted during the next time slot. Given that
the greedy schedule is used, then âiþ1 ¼ minfC;Bÿ Big.
The buffer underflow can be avoided by checking
whether Bi þ âiþ15fiþ1. If this is the case, then frame
i þ 1 is not included in the transmission set in stage
i þ 1. In this case, the buffer occupancy at the next stage
Biþ1 ¼ Bi þ âiþ1 and the feasible transmission set at next
stage Siþ1 :¼ Si. On the other hand, if Bi þ âiþ1 � fiþ1,
then we have the option of either including frame i þ 1
in the transmission or that of excluding it. If i is
included, i.e., Siþ1 ¼ Si [ fig, then Biþ1 ¼ Biþ
âiþ1 ÿ fiþ1. If i is not included, i.e., Siþ1 ¼ Si, then
Biþ1 ¼ Bi þ âiþ1.



Table 2. Notation for the optimal algorithm OPTFD

(Bi,Wi) : a state at stage i where Bi is the buffer occupancy and Wi is the cost function dependent information
Ji : shorthand notation for sate (Bi,Wi)
Si : a feasible set associated with (Bi,Wi)
Gi : set of states at stage i
Niþ1 (Bi,Wi) : set of states at stage iþ1 that can be reached from (Bi,Wi) with no constraint violation
Ci(Bi,Wi) : cost incurred in discarding the frames not in Si at state Ji
Ci

Jiÿ4Jiþ1
: transition cost from (Bi,Wi) to (Biþ1,Wiþ1)

Figure 7. The optimal selective frame discard algorithm
(OPTFD) for a given cost function.
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From the above discussion, we see that for any state
ðBi;WiÞ, Biþ1 can have at most two different values
depending on whether frame i þ 1 is included in Siþ1 or
not. Wiþ1 can be determined from Wi depending on the
state information required by the cost function. Each
possible combination of Biþ1 and Wiþ1 that can be
reached from ðBi;WiÞ determines a new state
ðBiþ1;Wiþ1Þ that belongs to Niþ1ðBi;WiÞ. For simplicity,
we use Ji as a shorthand notation for state ðBi;WiÞ, and
similarly, Jiþ1 for ðBiþ1;Wiþ1Þ. Let Ci

Jiÿ>Jiþ1 denote the
transition cost from state Ji to Jiþ1. Ci

Jiÿ>Jiþ1 is
determined by the cost function depending on whether
Siþ1 includes the i þ 1th frame or not. If it is included in
the set, then the transition cost is set to 0. Otherwise, the
cost function is used to compute the transition cost
based on the state information. Since more than one
state at stage i can lead to the same state at stage i þ 1,
the cost of state ðBiþ1;Wiþ1Þ, Ciþ1ðBiþ1;Wiþ1Þ, is the
smallest of the sum CiðBi;WiÞ þ Ci

Jiÿ>Jiþ1 over all states
ðBi;WiÞ such that ðBiþ1;Wiþ1Þ can be reached from
ðBi;WiÞ, i.e., ðBiþ1;Wiþ1Þ 2 Niþ1ðBi;WiÞ. To put it
formally, we have

Ciþ1ðBiþ1;Wiþ1Þ ¼ min
ðBi ;WiÞ2Gi

� CiðBi;WiÞ þ Ci
Jiÿ>Jiþ1 : ðBiþ1;Wiþ1Þ 2 Niþ1ðBi;WiÞ

n o
:

ð9Þ

The problem has now been reduced to a shortest path
problem. The objective is to find a feasible set which
corresponds to a minimal cost path from the initial state
to a state in stage N which has the smallest cost. We can
use forward search in dynamic programming to solve
the problem. The algorithm is described in pseudo-code
in Figure 7. In line 2, we start with the initial state
ðB0;W0Þ ¼ ð0; ;) whose cost is 0. Lines 4–6 of the
algorithm determine the set of states Giþ1 that can be
reached at stage i þ 1 from states Gi at stage i, and
compute the associated cost for each state Jiþ1 2 Giþ1

using (9). Finally at stage N, a state with the lowest cost
is found (line 7), and a set SN associated with this state is
an optimal set S� we are looking for (line 8).

The computational complexity of the algorithm
depends on the number of stages, and the number of
the states at each stage. Let W be the largest size of Wi

needed for computing the cost of state Ji at any stage i.
Then the complexity of the OPTFD algorithm is
OðBWNÞ, since there are N stages and there can be a
maximum of BW states at each stage. In the worst
possible case we may need to maintain 2N possible states
for each stage, since the cost function dependent state
information may require the current set Si. However, for
a realistic cost function like the one introduced in the
next section, this state will be much smaller. For an
example, consider a simple scenario where the cost of
discarding a frame is independent of the cost of
discarding any other frame. Then there is no need to
maintain Wi as the state can be uniquely determined by
Bi. In that case, the complexity of the algorithm is
OðNBÞ. In addition, in order to obtain an optimal set S�,
a feasible set Si associated with each state Ji has to be
maintained at each stage. This requires a large amount
of memory.

The algorithm as described above applies to video
streams with no inter-frame dependencies, e.g., JPEG
encoded video streams. To apply the algorithm to an
encoding scheme such as MPEG, we need to modify
the algorithm to take inter-frame dependence into
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consideration during the transition from states in the
current stage to those in the next stage. As previously,
we use the MPEG encoding scheme as an example to
illustrate how this can be done. Assume that the frames
of a MPEG video stream are transmitted in the
decoding order. To account for the dependence among
I, P and B frames, we use an additional state variable Xi.
Xi can take three possible values: Xi ¼ 0 means that the
most recent (in the decoding order) I or P frame before
frame i has been discarded; Xi ¼ 1 means that the most
recent I or P frame before frame i has been transmitted
but the second most recent I or P frame before frame i
has been discarded; and Xi ¼ 2 means that the two most
recent I or P frames before frame i have both been
transmitted. In addition to the playback deadline
constraint and the buffer constraint, whether the current
(i.e. the ith) frame can be transmitted is also determined
by the inter-frame dependency constraint represented by
the state variable Xi as follows: the current frame must
be discarded if it is a B frame and Xi < 2 or if it is a P
frame and Xi ¼ 0. The value of the state variable at the
i þ 1th stage, Xiþ1, depends only the value of Xi and the
type and transmission status of the current frame. If the
current frame is either an I frame or a P frame, the state
transition from Xi to Xiþ1 is depicted in Figure 8.
Namely, if the current I or P frame is discarded, then
Xiþ1 ¼ 0; otherwise Xiþ1 ¼ Xi þ 1 if Xi ¼ 0 or 1, and
Xiþ1 ¼ Xi if Xi ¼ 2. If the current frame is a B frame,
then Xiþ1 ¼ Xi no matter whether the current B frame is
discarded or not. With the help of this state variable, the
set of all states at stage i þ 1, Giþ1, can be computed
from states Ji ¼ ðBiþ1;Wiþ1Þ 2 Gi accordingly (see line 4
in Figure 7). Therefore, the same dynamic programming
approach can be used to devise an optimal selective
frame discard algorithm for MPEG video, given an
appropriate cost function.

Heuristic Selective Frame Discard Algorithms
for JPEG

As mentioned earlier the complexity of the optimal
selective frame discard algorithm, OPTFD, introduced
Figure 8. Transitions from Xi to Xiþ1 when current frame is I
or P.
earlier is OðBNW Þ. For large values of B and N, this can
result in very high complexity. In this section we design
a set of efficient heuristic algorithms that aim at
minimizing the cost associated with the discarded
frames. Most of these heuristics are designed based on
the MINFD algorithm and hence have a low computa-
tional complexity.

Recall that the MINFD algorithm finds the minimum
number of frames that must be discarded for a feasible
schedule. However it may tend to discard consecutive
frames if large frames are clustered together. Hence the
playback discontinuity at the client may be very high. In
order to provide a measure of this playback disconti-
nuity, we define a cost function, �ðSÞ, that takes two
aspects of playback discontinuity into consideration: the
length of a sequence of consecutive discarded frames
and the spacing or distance between two adjacent but
non-consecutive discarded frames.

The cost function �ðSÞ assigns a cost ci to a discarded
frame i depending on whether it belongs to a sequence of
consecutive discarded frames or not. If frame i belongs
to a sequence of consecutive discarded frames, then the
cost ci is defined to be li, if frame i is the lthi consecutively
discarded frame in the sequence. Otherwise, the cost ci is
defined based on its distance di to the previous discarded
frame and given by the formula ci ¼ 1þ 1=

ffiffiffiffi
di

p
. There-

fore, for a set S 2 N , the total cost of S is
�ðSÞ ¼

P
j2N \S cj :

Obviously there are many other ways to define a cost
function. We believe that the two aspects of playback
discontinuity considered by �ðSÞ, namely the cost due to
consecutive discard and that due to spacing between
discarded frames, are important measures of the
perceived quality. Any other cost function should reflect
these two aspects of playback discontinuity in one way
or another. More study4 is needed in this area to come
up with a more realistic cost function based on
perceptual quality of video playback [29]. In the rest
of this section we will describe a set of heuristic
algorithms based on the cost function �ðSÞ defined
above and results of performance evaluation are then
4Although a lot of attention has been devoted to development
of accurate perceptual models for video encoding [28],
unfortunately most these models are not directly applicable
to our study here. We need a relative frame-based perrceptual
model to design a meaningful cost function as a basis for
selective frame discarding.



Figure 9. The JITFD selective frame discard algorithm.

Figure 11. Procedure to select the frame to discard for
MINCD.
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presented. Our algorithms can be easily modified to
incorporate the specifics of other cost functions.

Heuristic algorithms

The heuristic algorithms aim at finding a low cost
feasible set S by taking either the cost of discarding a
frame directly into consideration or indirectly. They
differ in the criteria used in selecting a frame to discard.
All the heuristics use the greedy schedule to determine
the amount of data to be transmitted in each time slot.

As a simple baseline algorithm, we first introduce the
just-in-time selective frame discard heuristic, JITFD.
JITFD is perhaps the simplest and most intuitive
selective frame discard approach. It always discards
the current frame whenever its playback deadline cannot
be met, irrespective of its cost. The algorithm is shown in
Figure 9. At each time i, the buffer is increased by âi =
min(Bÿ Biÿ1, C) (line 3), as per the greedy transmission
schedule. If the buffer occupancy is smaller than the size
of the current frame i, i.e. Bi þ âi < fi, the frame is
discarded as in lines 4–7. The computational complexity
of this algorithm is linear in N.

The distance based selective frame discard algorithm,
DISTD(�), uses a parameter � to indirectly control the
Figure 10. Procedure to select the frame to discard for
DISTD.
cost of discarded frames. The basic structure of the
algorithm is the same as the MINFD algorithm. For any
given �� 1, DISTD(�) attempts to space the discarded
frames � distance apart by incorporating a distance
based priority in selecting a frame to discard. The
procedure to select a frame to discard is presented in
Figure 10. At each time i, if the playback deadline of
frame i is violated, the procedure is invoked. The
procedure finds a frame, k, with highest priority pk,
among all frames selected for transmission since the last
buffer full point i0. Here the priority pk of a frame is
defined based on its distance dk from the previously
discarded frame: pk ¼ minf�; dkg (line 2). Hence all
frames with a distance at least � are treated with the
same priority. Frames are considered for discarding in
the order of decreasing priority. Frames with highest
priority, namely, pj ¼ �, are considered first. If such a
frame cannot be found, all frames with distance � -1 are
considered, and so forth. Among the frames with the
same priority, the frame with the largest gain �i

k is
chosen (line 8). Finally, the selected frame k is chosen
for discarding only if its gain �i

k is bigger than the
size of the current frame, fi (this criterion is not shown in
Figure 10). Otherwise, the current frame i is discarded.

The minimum cost based selective frame discard
algorithm, MINCD, takes the cost of discarding a frame
Figure 12. Procedure to select the frame to discard for
MCMGD.



Table 3. Characteristics of JPEG video traces

Title Length
(min)

No. of
frames

Ave. rate
(Mbps)

Peak rate
(unsmoothed)

Peak rate
(smoothed)

Sleepless in Seattle 101 181457 2.28 3.99 3.30
Beauty and Beast 80 143442 3.04 7.29 6.54
Jurassic Park 112 220061 2.73 5.73 4.78
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directly into consideration. The procedure for selecting
the frame to discard is given in Figure 11. At time i, if
the playback deadline of frame i is violated, a frame k
with lowest incurred cost cik is chosen for discarding. Let
Siÿ1 be the feasible set constructed at time i ÿ 1. The
incurred cost cik is defined to be the cost incurred if
frame k is discarded at time i, i.e., cik ¼
�ðSiÿ1Þ ÿ �½ðSiÿ1 [ figÞ\fkg�. As shown in lines 3–6, a
frame with the smallest incurred cost is chosen for
discarding. If two frames have the same incurred cost,
the one that yields larger gain �i

j is chosen (lines 7–8).

The last heuristic we consider is the minimum cost
maximum gain based selective frame discard heuristic,
MCMGD. In selecting a frame to discard, it takes both
the gain �i

j from discarding a frame and the cost cij
incurred thereof into consideration. The procedure for
selecting the frame to discard is shown in Figure 12. It
discards a frame k with the largest gain to the incurred
cost ratio, i.e., �i

j=c
i
j (lines 5–6). By discarding frames

with the largest gain to cost ratio, the MCMGD
heuristic uses in effect the steepest gradient search for
an optimal solution.

The computational complexity of the DISTD,
MINCD and MCMGD heuristics is OðN2Þ. This is
much smaller than the computational complexity of the
optimal algorithm OPTFD.

Performance evaluation

In this section, we evaluate the performance of the
heuristic selective frame discard algorithms using JPEG
Table 4. Comparison of various selective frame discard algorithm

Selective frame
discard algo

Sleepless in Seattle

Discards Cost Dis

JITFD 10538 15720.21 88
DISTD (2) 10272 15696.25 86
DISTD (5) 10414 15372.89 86
MINCD 10473 15332.03 87
MCMGD 10455 15246.31 87
MINFD 9907 128797.77 81
video traces. For given bandwidth and client buffer size
constraints, the number of frames discarded and the cost
incurred by these algorithms are compared. The cost is
computed using the heuristic cost function defined
earlier. The impact of each constraint on the perfor-
mance of these algorithms is also studied by varying one
constraint while keeping the other constraint fixed. We
present the results for three representative traces,
‘‘Sleepless in Seattle’’, ‘‘Beauty and the Beast’’ and
‘‘Jurassic Park’’. Table 3 lists the characteristics of these
traces [31], where among other things, the average rate,
the peak rate of the video traces are shown. Also
included is the peak rate of the optimal smoothed
schedule [4] using a client buffer size of 1MB and zero
startup delay.

Table 4 compares the performance of various selective
frame discard algorithms. The rate constraint C in each
case is set to the average rate of the video trace, while the
client buffer size B is set to 1MB. As shown in Table 3,
the peak rate of the optimal smoothed schedule is
considerably higher than the chosen rate constraint.
Hence, continuous playback is not possible, forcing the
server to discard frames. Consider the performance of
the heuristic algorithms when applied to the video trace
‘‘Sleepless in Seattle’’. JITFD discards 10538 frames
with a cost of 15720.21. DISTD(2) drops 10272 frames,
while DISTD(5) drops 10414 frames, larger than that of
DISTD(2). However, the cost of DISTD(5) is
15372.894, lower than that of DISTD(2), which is
15696.250. This is due to the fact the discarded frames in
DISTD(5) are more distributed than those of
DISTD(2), incurring a lower cost despite a larger
s for JPEG

Beauty and the Beast Jurassic Park

cards Cost Discards Cost

78 13355.89 13457 20269.55
02 13370.69 13141 20262.52
92 13196.46 13294 19909.13
42 13170.24 13384 19845.25
12 13130.756 13342 19746.68
83 106951.31 12516 148921.86



Figure 13. Performance under varying buffer sizes with C
fixed at 2.28Mbps for ‘‘Sleepless in Seattle’’. (a) Buffer size vs
number of discarded frames; (b) buffer size vs cost.
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number of discarded frames. For the same trace,
MINCD discards 10473 frames with a cost of
15332.03, and MCMGD incurs a cost of 15246.31 by
discarding 10455 frames. All the heuristic discard
schemes that take cost into consideration incur less cost
than JITFD does. Among them, MCMGD performs
best, as expected. We also ran the optimal algorithm5,
OPTFD, on this trace. It discarded 10455 frames with a
cost of 15245.8. We see that the results produced by
MCMGD are near optimal. It is also worth pointing out
that MINFD indeed gives the lowest number of
5In order to speed up the execution of OPTFD and reduce the
memory space, a branch and bound strategy is used to control
the number of states by pruning states which are unlikely to
lead to an optimal cost. Hence the results produced may not be
completely accurate, but we believe they give a good
approximation to the true optimal values.
discards. However, the incurred cost is quite high as it
tends to discard consecutive large frames. Clearly, there
is a trade-off between reducing the total number of
discarded frames and distributing discarded frames in a
video stream.

We now study the impact of varying buffer size while
fixing the rate constraint on the performance of the
selective frame discard algorithms. Figure 13 shows the
number of discarded frames as well as the incurred cost
as a function of buffer size for the trace ‘‘Sleepless in
Seattle’’. The bandwidth C is fixed at 2.28Mbps, and the
client buffer size B is increased from 0.5 MB to 2.5 MB.
It can be seen that all the other four heuristic algorithms
perform better than JITFD. The difference in perfor-
mance among the heuristics widens as the buffer size
increases. This phenomenon can be explained as follows.
Recall that frames which come before a buffer full point
Figure 14. Performance under varying bandwidth with B
fixed at 1MB for ‘‘Sleepless in Seattle’’. (a) Bandwidth vs
number of discarded frames; (b) bandwidth vs cost.



Table 5. Characteristics of Starwars MPEG video trance

Title Length
(min)

I
frames

P
frames

B
frames

Total
frame

Avg. Rate
(Mbps)

Peak rate
(Mbps)

Starwars 121 14505 43514 116036 174055 0.374 4.446
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are not considered for discarding for a deadline
violation after the buffer full point. Hence, with
increased buffer size, the number of frames from which
a frame can be selected for discarding increases. It
therefore enhances the effectiveness of the selection
criteria used in the heuristics such as MINCD and
MCMGD. Among all the heuristics, it is quite evident
that MCMGD performs best at all buffer sizes.

Figure 14 shows the impact of bandwidth variation
for the trace ‘‘Sleepless in Seattle’’. The bandwidth is
varied from 2.18Mbps to 2.36Mbps with the client
buffer size fixed at 1MB. As the bandwidth increases,
the difference in performance between the JITFD and
the other four heuristic algorithms narrows slightly. This
is because at a higher bandwidth, the playback deadline
of fewer frames are violated. As a result, discarded
frames are more likely to be distributed and the
advantage of more sophisticated heuristics is less
pronounced. The MCMGD algorithm still has the best
performance across the bandwidth range.

We have run the heuristic algorithms on other JPEG
traces and the results obtained are very similar. We
conclude that the proposed heuristic algorithms work
well in improving the perceived quality as measured by
the proposed cost function. Among them, the MCMGD
heuristic has the best performance.

Heuristic Selective Frame Discard Algorithms
for MPEG

In this section, we extend the heuristic algorithms
developed for JPEG encoded video to handle inter-
Table 6. Comparison of the various selective frame discard algor

Selective frame
discard algo

Discar

I P

JITFG 210 827
MINCD 1 18
MCMGD 1 18
frame dependencies for MPEG encoded video. The
evaluation based on MPEG video traces is then
presented.

The following modifications are made to the selective
frame discard heuristics in order to take the MPEG
inter-frame dependencies into account. If the current
frame is a P or B frame, it is discarded if its previous
reference frame is not included in the transmission
schedule. In addition, a B frame is also discarded if its
future reference frame cannot be transmitted before the
playback deadline of the current B frame.

The above modifications are the only changes needed
for the just-in-time (JITFD) heuristic. For the minimum
cost (MINCD) and min-cost-max-gain (MCMGD)
heuristics, an additional modification is incorporated
to attach a relative importance to I, P and B frames. In
deciding a frame to discard, frames are considered in the
following order of relative importance: B, P3, P2, P1, I .
In other words, eligible frames of types B are always
considered first. If no eligible frames of type B are left,
eligible frames of type P3 are considered, and so forth.
As described in the last section, MINCD discards a
frame with lowest incremental cost, while MCMGD
chooses a frame with largest ratio of gain and
incremental cost. Similar extensions can also be
incorporated in the distance-based (DISTD) heuristic,
where the distance between frames is now defined for
each type of frames. For clarity of exposition, we do not
include the DISTD heuristic in the following perfor-
mance evaluation.

The statistics of the MPEG trace is listed in Table 5.
The performance of the JITFD, MINCD and MCMGD
ithms for MPEG

ded frames Cost

B Total

5924 6961 31761.86
11948 11967 20597.93
9860 9879 17364.47
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heuristics is evaluated and compared in Table 6 using
the Star WarsMPEG video trace. The rate constraint C
is set to 0.4 Mbps and the client buffer size B is fixed at
0.5MB. From Table 6, we see that JITFD performs
significantly worse than MINCD and MCMGD, unlike
the case of JPEG. This is due to the fact that JITFD
does not take into account the frame dependencies and
the relative importance of frame types. Hence it is prone
to discard a large number of I frames, incurring a much
higher cost, as compared to that of MINCD and
MCMGD. Whereas MINCD and MCMGD attempt to
minimize the chance of discarding I and P frames by
considering frame types in the order of their relative
importance. MCMGD discards fewer B frames than
MINCD, while the same number of I and P frames are
discarded by both heuristics. MCMG performs better
than MINCD, because it takes both cost and gain into
consideration.
Figure 15. performance under (a) varying buffer sizes, buffer
size vs cost (C=0.4Mbps); (b) varying bandwidth for
‘‘Starwars’’. bandwidth vs cost (B=0.5MB).
The impact of varying client buffer size and network
bandwidth on the performance of these heuristics is
shown in Figure 15 (a) and (b) respectively. In both
cases, as the client buffer size or network bandwidth
increases, the cost for each heuristic decreases. This is
because with larger buffer or higher network bandwidth,
the likelihood of discarding I or P frames is reduced,
thereby reducing the overall cost. We have observed
similar results for other MPEG traces.

Conclusions

In this paper, we have developed various selective frame
discard algorithms for stored video delivery across a
network where both the network bandwidth and the
client buffer capacity are limited. We began by
formulating the problem of optimal selective frame
discard using the notion of a cost function. The cost
function captures the perceived video quality at the
client. Given network bandwidth and client buffer
constraints, we developed an OðN logNÞ algorithm to
find the minimum number of frames that must be
discarded in order to meet these constraints. The
correctness of the algorithm is also formally established.
We presented a dynamic programming algorithm for
solving the optimal selective frame discard problem.
Since the computational complexity of the optimal
algorithm is prohibitively high in general, we also
developed several efficient heuristic algorithms for
selective frame discard. These algorithms are evaluated
using JPEG and MPEG video traces. We found that the
minimum cost maximum gain algorithm performs best
for both JPEG and MPEG encoded video.

In this paper, we have considered a network model
where the network bandwidth is fixed and is known
a priori, as is the case in a network with CBR service.
We can easily extend our work to the case where the
network bandwidth can vary, but the bandwidth
variation is known to the server beforehand. To address
the case where the network bandwidth is unknown, we
are currently working on adaptive selective frame
discard schemes using feedback-based bandwidth esti-
mation mechanisms. Initial work in this direction is
reported in [30]. We are currently conducting experi-
ments to evaluate our schemes across a real network.
Evaluation of server selective frame discard algorithms
based on the actual QoS perceived by clients will
then be carried out. In addition, we are also applying
the MINFD algorithm in the context of layered
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video to address the problem of optimal selective layer
discarding.
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