
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007 359

Fast Local Rerouting for Handling
Transient Link Failures

Srihari Nelakuditi, Member, IEEE, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, Member, IEEE, and
Chen-Nee Chuah, Senior Member, IEEE

Abstract—Link failures are part of the day-to-day operation
of a network due to many causes such as maintenance, faulty
interfaces, and accidental fiber cuts. Commonly deployed link
state routing protocols such as OSPF react to link failures through
global link state advertisements and routing table recomputa-
tions causing significant forwarding discontinuity after a failure.
Careful tuning of various parameters to accelerate routing con-
vergence may cause instability when the majority of failures
are transient. To enhance failure resiliency without jeopardizing
routing stability, we propose a local rerouting based approach
called failure insensitive routing. The proposed approach prepares
for failures using interface-specific forwarding, and upon a failure,
suppresses the link state advertisement and instead triggers local
rerouting using a backwarding table. With this approach, when no
more than one link failure notification is suppressed, a packet is
guaranteed to be forwarded along a loop-free path to its destina-
tion if such a path exists. This paper demonstrates the feasibility,
reliability, and stability of our approach.

Index Terms—Fast rerouting, interface-specific forwarding,
transient failures.

I. INTRODUCTION

THE Internet has seen tremendous growth in the past decade
and has now become the critical information infrastruc-

ture for both personal and business applications. It is expected
to be always available as it is essential to our daily commer-
cial, social, and cultural activities. Service disruption for even
a short duration could be catastrophic in the world of e-com-
merce, causing economic damage as well as tarnishing the repu-
tation of a network service provider. In addition, many emerging
services such as Voice over IP and virtual private networks for
finance and other real-time business applications require strin-
gent service availability and reliability. Unfortunately, failures
are fairly common in the everyday operation of a network due
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to various causes such as maintenance, faulty interfaces, and
accidental fiber cuts [1], [2]. Moreover, it was observed that
most failures are transient (i.e., short-lived): 50% last less than
a minute. Hence, there is a growing demand for failure resilient
routing protocols that ensure high service availability and relia-
bility despite transient link failures.

The link-state routing protocols such as OSPF and ISIS,
which are commonly deployed in today’s networks, react to
link failures by having routers detect adjacent link failures, dis-
seminate link-state changes, and then recompute their routing
tables using the updated topology information. Recent studies
[1], [3] have reported that the resumption of forwarding after a
link failure typically takes several seconds. During this period,
some destinations could not be reached and the packets to
those destinations would be dropped. In today’s high-speed
networks, even a short recovery time can cause huge packet
losses. For example, if an OC-48 link is down for 10 s, close
to 3 million packets (assuming an average packet size of 1 kB)
could be lost! Such discontinuity in packet forwarding has an
adverse effect on the performance of TCP, in particular when
delay bandwidth product is large. Furthermore, such service
disruption, albeit relatively short, is deemed unacceptable for
many continuous media applications such as carrier-grade
Voice over IP.

There have been some proposals [3]–[5] for accelerating the
convergence of link-state routing protocols. The general recipe
calls for fine tuning of several parameters associated with link
failure detection, link-state dissemination and routing table re-
computation. Although these remedies can improve the conver-
gence time of routing protocols, they run the risk of introducing
instability in the network, in particular, in the face of frequent
transient link failures. Faster convergence requires immediate
advertisement of a failure event that may last only a few sec-
onds; just as the new routing tables are computed, they need
to be recomputed again due to new link-state updates. More im-
portantly, such advertisements of internal link-state changes can
cause a large churn of external routes due to hot-potato routing
often employed in the Internet [6]. On the other hand, delayed
advertisement of a failure by the adjacent node would increase
forwarding discontinuity; other nodes that are unaware of the
failure continue to route packets along the failed link which
get dropped at the adjacent node. The fundamental problem
with these schemes is that they react after the failure of a link
and forwarding is disrupted till the optimal routes are globally
recomputed.

Multiprotocol label switching (MPLS)-based approaches to
failure recovery [7] leverage explicit routing for fast rerouting.
An explicitly routed protection LSP (label switched path) is
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set up to provide a backup path for each vulnerable physical
link. The protection LSP acts as a parallel virtual link. When
the physical link fails, the upstream node switches traffic from
the physical link to the virtual link. The label stacking capa-
bility of MPLS is used to reroute all the LSPs that used to go
over the failed link by nesting them into the protection LSP.
Since rerouting is done locally at the point of failure without the
need to perform any signaling at the time of failure, MPLS can
handle transient failures effectively with minimal disruption to
forwarding of data. However, deployment of MPLS necessitates
changes in the forwarding plane of traditional routers—they
would have to perform label swapping instead of conventional
destination-based forwarding. Our objective is to provide fast
local rerouting to deal with transient link failures with minimal
changes to the current networking infrastructure.

We propose [8], [9] a novel failure insensitive routing (FIR)
approach for ensuring high service availability and reliability
without changing the conventional destination-based for-
warding paradigm. The proposed approach provides failure
resiliency by exploiting the existence of a forwarding table
per linecard of each interface for lookup efficiency in current
routers. There are two key ideas that underpin the FIR ap-
proach based on local rerouting: interface-specific forwarding
and failure inferencing. Under FIR, routers infer link failures
based on packets’ flight (the interfaces they are coming from),
precompute interface-specific forwarding tables (backup paths)
in a distributed manner and trigger local rerouting without
relying on network-wide link-state advertisements. Thus, FIR
enhances failure resiliency and routing stability by suppressing
the advertisement of transient failures and locally rerouting
packets along loop-free paths during the suppression period.

In the rest of this paper, we present the FIR approach and
analyze its performance. This paper is organized as follows. We
first introduce the FIR approach in Section II and prove its cor-
rectness in ensuring forwarding continuity while suppressing
single link failures. Section III describes efficient FIR algo-
rithms for inferencing failures and computing interface-specific
forwarding tables. In Section IV, we present a formal model
for analyzing the routing stability and network availability and
show that FIR provides better stability and availability than
OSPF/ISIS. Simulation results presented in Section V validate
the analytical model. Section VI contrasts FIR with the related
work. Section VII concludes this paper with a brief discussion
on future work.

II. FIR

It is clear that the existing routing protocols such as
OSPF/ISIS that perform global rerouting need to trade off
between forwarding continuity and routing stability. On the
other hand, local rerouting makes it possible to suppress global
advertisement of transient failures without causing forwarding
discontinuity, thus enhancing failure resiliency without jeopar-
dizing routing stability. The fundamental issue in designing a
local rerouting scheme is the avoidance of forwarding loops.
A straightforward local recomputation of new shortest paths
without the failed link by the adjacent node could result in
a loop since other nodes are unaware of the failure and their
routing tables do not reflect the failure. We propose a novel

Fig. 1. Topology used for the illustration of FIR.

Fig. 2. Conventional routing entries at each node to destination node 6: before
and after local recomputation when link 2–5 is down.

failure insensitive routing approach that addresses this issue by
employing interface-specific forwarding, and by performing
local rerouting using a backwarding table upon a failure while
suppressing the failure notification. In this section, we discuss
the key ideas behind the FIR approach, present an algorithm to
compute interface-specific forwarding and backwarding tables
for handling single suppressed link failures, and prove its cor-
rectness in ensuring the delivery of packets to their destinations
along loop-free paths while suppressing single link failures.

A. Concept

Under FIR, when a link fails, adjacent node suppresses global
advertisement and instead initiates local rerouting of packets
that were to be forwarded through the failed link. Though other
nodes are not explicitly notified of the failure, they infer it from
packet’s flight. When a packet arrives at a node through an un-
usual interface (through which it would never arrive had there
been no failure), the potentially failed links, referred to as key
links, can be inferred and an appropriate next hop can be used
to avoid those key links. Such interface specific forwarding ta-
bles can be precomputed since inferences about key links can
be made in advance. Thus, under FIR, when a link fails, only
nodes adjacent to it locally reroute packets to the affected desti-
nations and all other nodes simply forward packets according to
their precomputed interface-specific forwarding tables without
being explicitly aware of the failure. Once the failed link comes
up again, forwarding resumes over the recovered link. This ap-
proach decouples forwarding continuity and routing stability
by handling transient failures locally and notifying only persis-
tent failures globally. In essence, with FIR, packets get locally
rerouted along (possibly suboptimal) alternative paths without
getting caught in a loop or dropped till the new shortest paths
are globally recomputed.

We use an example to illustrate how packets get locally
rerouted under FIR in the event of failures. Consider the
topology shown in Fig. 1, where each link is labeled with
its weight. First, we point out the problem with conventional
routing in case of a link failure. Suppose link 2–5 is down. The
routing table entries at each node to destination node 6 before
and after the local recomputation by node 2 are shown in Fig. 2.
Before node 2 recomputes its routing table, packets from nodes
1 to 6 will be dropped at node 2 because the corresponding
next hop node 5 is not reachable since link 2–5 is down. When
node 2 recomputes its routing table, it will have 1 as the next
hop to reach 6 as shown in Fig. 2. If only node 2 recomputes
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Fig. 3. Interface-specific forwarding entries at each node to destination node 6: before and after local computation when link 2–5 is down.

its entries while others are not notified or still in the process
of recomputing their entries, then packets from 1 to 6 get
forwarded back and forth between nodes 2 and 1, causing a
forwarding loop, and may eventually be dropped. This shows
that using conventional forwarding tables, local rerouting is not
viable as it causes forwarding loops.

In contrast, under FIR, forwarding loops are avoided by
inferring a link’s failure from packet’s incoming interface.
When 2–5 is down, node 2 locally reroutes packets from nodes
1 to 6 back to node 1 instead of dropping them. When a packet
destined to 6 arrives at node 1 from node 2, node 1 can infer
that some link along its shortest path to 6 must have failed,
as otherwise, 2 should never forward packets destined to 6 to
node 1. Node 2 would forward packets destined to 6 to node 1
only if the link 2–5 or 5–6 is down, i.e., the key links associated
with the interface and destination 6 are 2–5, 5–6. So
when a packet for node 6 arrives at node 1 from node 2, node
1 can infer that one or both of these links are down, in spite
that 1 is not explicitly notified of the failures. To ensure that
the packet reaches node 6, node 1 will forward it to node 4
instead, avoiding the corresponding key links, i.e., both the
potentially failed links 2–5 and 5–6. That is why, in Fig. 3, a
packet arriving at node 1 with destination 6 through neighbor
2 is forwarded to node 4 while it is forwarded to node 2 if it
arrives through the other two neighbors. Such interface specific
forwarding makes it possible to perform local rerouting without
explicit failure notification.

Let us again consider the case of link 2–5 going down. Node
2 recomputes its forwarding table entries as shown in Fig. 3. So
a packet from 2 to 6 takes the route when
the link 2–5 is down. Since node 1 is unaware of the failure, a
packet from 1 to 6 gets forwarded to 2 which reroutes it back to
1. Node 1 then forwards the packet to 4 according to its entry
at the interface with previous hop 2. This way, packets from 1
to 6 traverse the path . Note that though
node 1 appears twice in the path, it does not constitute a loop.
With interface specific forwarding, a packet would loop only
if it traverses the same link in the same direction twice. Thus,
using failure inferencing and interface specific forwarding, FIR
ensures loop freedom and enables local rerouting.

It should be noted that these inferences about potential link
failures are made not on the fly but in advance and interface-
specific forwarding tables are precomputed according to these
inferences. Furthermore, FIR adheres to a conventional desti-
nation-based forwarding paradigm though it has different for-
warding table at each interface. While FIR requires that the next
hop for a packet is determined based on its previous hop, it is
very much feasible with the current router architectures as they
anyway maintain a forwarding table at each line card of an in-
terface for lookup efficiency. The only deviation is that unlike in
current routers which have the same forwarding table at each in-
terface, under the FIR approach these tables are different. How-
ever, the forwarding process remains the same: When a packet
arrives at an incoming interface, the corresponding forwarding

table is looked up to determine the next hop and the outgoing
interface.

The previous discussion demonstrates several attractive fea-
tures of FIR listed as follows.

• FIR provides near-continuous forwarding of packets
despite failures. It initiates local rerouting as soon as a
failure is detected and continues to forward packets while
suppressing the failure notification. With FIR, reachability
of destinations does not depend on fine tuning of various
parameters associated with link failure propagation and
routing table recomputation.

• FIR improves service availability without jeopardizing
routing stability. It handles transient failures locally and
notifies only persistent failures globally. Considering that
half of the link failures last less than a minute [2], by set-
ting suppress interval to one minute, they can be handled
locally without link state advertisements.

• FIR requires minimal changes to conventional routing
and forwarding planes. The change needed to the existing
routing framework for deploying FIR is to replace the
traditional Dijkstra’s algorithm for computing interface
independent routing table with an algorithm for computing
interface dependent forwarding tables.

• FIR performs local rerouting only during the time a link
failure is suppressed. When all the routers have the same
consistent view of the network, forwarding under FIR
would be no different from traditional routing. So FIR
can be used in conjunction with any other mechanism for
engineering traffic.

We now present an algorithm for computing the interface-
specific forwarding tables at a given node assuming at most a
single link failure is suppressed in the network. There are several
reasons for concentrating on singe link failures. First, it has been
observed [2] that failure of a single link is more common than
simultaneous multiple link failures. Second, under FIR a failure
is suppressed for a certain duration and if it persists beyond that
time, a global update is triggered. Only simultaneous suppressed
failures could pose problem for FIR. The possibility of multiple
simultaneous suppressed failures happening in the network is
rare considering that suppress interval would be in the order of
a minute. Third, as we demonstrate in Section V, by preparing
just for single link failures, FIR can deal with the majority of
the simultaneous multiple link failures also.

B. Algorithm

Let be the graph with vertices and edges
representing the network. We assume that all the links are

point-to-point, and bidirectional with equal weight in both di-
rections, which is generally true for the backbone networks. We
also assume that whole network forms a single OSPF area and,
hence, each node has complete link-state information.1 The no-
tation used here and in the rest of the paper is listed in Table I.

1We are currently exploring ways to extend the FIR approach to networks
with asymmetric links, broadcast LANs, and multiple areas [10].
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TABLE I
NOTATION

The computation of the forwarding table entries of an inter-
face involves identifying a set of links whose individual or com-
bined failure causes a packet to arrive at the node through that
interface. We refer to these links as key links and denote by
the set of links which when one or more down cause packets
with destination to arrive at node from node . When dealing
with single suppressed link failures, the set can be defined
as follows. An edge is included in only if both of
the following conditions are satisfied:

1) with is a next hop from to ;
2) without , directed edge is along a shortest2

path from to .
According to the previous definition of key links, it is clear

that if is the usual next hop from to without any
failures.3 For the topology in Fig. 1, we have

and while as explained
in the following. The usual next hop along the shortest path from
node 1 to reach 6 without any failures is 2, i.e., .
So if all the links are up, node 1 should never receive from 2 a
packet destined for 6. However, if the link 2–5 is down, node 2
would forward packets with destination 6 to node 1. Similarly,
when the link 5–6 is down, packets from 5 to 6 would traverse
the path . So, from the arrival of a
packet with destination 6 from neighbor node 2, node 1 can
infer that one or both of the links 2–5 and 5–6 are down, i.e.,

. Similarly, node 1 would receive a
packet for the destination 6 through 3 when the link 3–5 is down.
In the other case, when link 5–6 is down, packets arrive at node

2Note that FIR assumes that the shortest paths satisfy Bellman’s principle of
optimality, which is true for commonly employed additive metrics.

3Due to this property, when no failure notification is suppressed, forwarding
under FIR is no different from traditional interface-independent forwarding.

1 through 2 and not through 3 since from 5 to 6 the (recomputed)
shortest path would be . Hence from the
arrival of packets destined to 6 through node 3, node 1 can infer
that link 3–5 is down. However, since node 3 is not a usual next
hop from node 1 to node 6 (violation of condition 1), .

Algorithm 1: KEYLINKS

1: for all do
2:
3:
4: if then
5: return
6:
7: for all do
8:
9: if then

10: for all do
11:
12: return

The KEYLINKS procedure for computation of key links of
the incoming interface of from is shown in Algorithm 1. The
SPF procedure (not shown here) used by the KEYLINKS pro-
cedure returns a shortest path tree (SPT) rooted at the requested
node given the set of vertices and edges . The KEYLINKS
procedure initially sets to for each destination . The
set remains , if is not a next hop from to without
any failures. The condition in line 4 checks if is a next hop
from to any destination. The set of nodes for which is a
next hop from is empty when itself is reached through some
other neighbor. Essentially after line 6, the set contains all
the nodes for which is a usual next hop from . The set of
key links may be nonempty only for the nodes in . An edge

is added to set if shortest paths from to pass
through when is down. To check this, the shortest
path tree rooted at node without is built using
SPF procedure (line 8). The condition in line 9 tests to see if
packets to any destination arrive at from when is
down. The set of destinations for which is not a usual next
hop from but becomes a next hop without is given by

. For all such destinations, is in-
cluded in their set of key links (lines 10–11).

Once the key links are determined, it is straightforward to
compute the interface specific forwarding tables. Let be the
set of all links in the network. Suppose represents the
set of next hops from to given the set of links . Let
denote the forwarding table entry, i.e., the set of next hops to

for packets arriving at through the interface associated with
neighbor . This entry can be computed using SPF after ex-
cluding the links in from the set of all links . Thus

The forwarding tables corresponding to node 1 of Fig. 1 are
shown in Fig. 4(a). Given that , the
shortest path from 1 to 6 without those links would be

. Therefore, packets destined for 6 arriving at 1 via 2 are
forwarded to next hop 4. On the other hand, the next hop for
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Fig. 4. Interface-specific forwarding and backwarding tables at 1.

packets to destination 5 arriving via 2 is set to 3 since
. The other entries are also determined similarly. Once

the forwarding tables are computed, packets arriving through an
interface are forwarded in the usual manner by looking up the
table corresponding to that interface.

When an interface is down, its backwarding table is used to
locally reroute packets that were to be forwarded through that
interface. The entries in this table, denoted by , give the set
of alternate next hops, referred to as back hops, from node for
forwarding a packet with destination when the link to
the usual next hop node is down. The backwarding table en-
tries can also be precomputed similar to forwarding table entries
once the key links are identified as follows:

Essentially, we exclude all the links that would cause the packet
to exit from the interface of to and also the link itself
in computing the back hops for .

The backwarding table entries for node 1 of the topology in
Fig. 1 are shown in Fig. 4(b). Let us look at the entries for the
interface . It is clear that when the link is down,
packets to destinations 2, 5, and 6 be rerouted to 3 since the
shortest path to these nodes without is through 3. But,
it may not be obvious why the next hops for destinations 3 and
4 are 4 and 3, respectively. Consider the entry of 3. The corre-
sponding set of key links is , i.e., a packet with
destination 3 is forwarded from 1 to 2 only if is down.
So, when is also down, the next best path is through 4.
Similarly, is 3. Now, let us turn our attention to the back-
warding table in Fig. 4(b) for the interface . According to
these entries, when link is down, packets to 4 get rerouted
to 2 and packets to any other destination are simply discarded as
they are not reachable. This is because packets to other destina-
tions are forwarded to 4 only when certain other links are also
down. For example, and when link

also fails, node 6 becomes unreachable from node 1.
By employing interface-specific forwarding and back-

warding tables, we can eliminate the delay due to any dynamic
recomputation and reroute packets without any disruption
even in the presence of link failures. The downside is that the
deployment of backwarding tables requires changes to the for-
warding plane. When an interface is down, the corresponding
backwarding table needs to be looked up to reroute the packet
through another interface. This necessitates a change in the
router architecture, the cost of which we are not in a position
to assess. To avoid altering the forwarding plane, we propose
to maintain the backwarding tables in the control plane and
recompute the forwarding tables quickly as follows. Suppose
the failed link is and the new forwarding tables are

denoted by . Then the forwarding table entry of destination
for interface, where , is computed as follows:

if
otherwise.

The previous expression takes into account the possibility of
multiple next hops along equal cost paths to a destination.4 A
simplified expression for single path routing would be

if
otherwise.

Essentially, only those entries in the forwarding tables that have
as the next hop are reset according to the backwarding table

associated with . Thus, using the backwarding tables, in case
of an adjacent link failure, a node can quickly recompute the
forwarding table entries.

We now summarize the operation of the FIR approach. Each
node under FIR maintains a forwarding table and a back-
warding table per each neighbor . is used to for-
ward packets arriving at through neighbor . is used for
local rerouting of packets when the link is down. Sup-
pose the failure of the link is detected by node at time

. Then node performs local rerouting of the packets that
were to be forwarded to . If the failure persists for a preset
duration , then a global link state update is triggered at

and forwarding tables at all routers are recom-
puted. During the time period between and ,
the link failure update is said to be suppressed since all the nodes
other than the adjacent nodes and are not aware of the failure.
Local rerouting is in effect when and only when there exists a
suppressed failure event. After sometime, suppose at time ,
link comes up. Then, the action taken by node depends
on whether the failure event is being suppressed or not. If the
failure event is being suppressed, original forwarding tables are
locally restored and forwarding resumes over the recovered link.
Otherwise, the link is observed for a preset period and if it
stays up, then at time , a global update is triggered
announcing that the link is up. This way, failures of short du-
ration are handled locally while persistent failures are updated
globally. When the failures are transient, FIR not only improves
destination reachability but also routing stability.

C. Completeness and Correctness

We now prove that with key links and forwarding tables
computed as previously described, when no more than one link
failure is suppressed, forwarding under FIR is: 1) correct, i.e.,
does not cause a packet to traverse any link more than once in
the same direction and 2) complete, i.e., delivers a packet to the
destination if there exists a path. In the following, Theorems
2 and 3, respectively, provide the proof of completeness and
correctness of FIR.

Suppose a packet with destination arrives at node through
the interface associated with the neighbor node . We first show
in Theorem 1 that the forwarding path under FIR is identical to
that under OSPF when there is no failed link. In Theorem 2, we
show that the destination is still reachable from node even if
we remove all the key links associated with the incoming

4Note that FIR does not assume single path routing and it works correctly
even with equal cost multipath (ECMP) routing.
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interface from the topology. Finally, Theorem 3 shows that all
the nodes along the path to the destination choose the next hop
consistently so that no loop occurs. Theorem 3 is given here but
the proofs of other theorems and lemmas can be found in [11].

Theorem 1: If there is no failure, the forwarding path from
to under FIR is identical to that under OSPF.

It is easy to see that a link included in key links should
be on a shortest path from to because, otherwise, that link’s
failure would not cause the packet to arrive at from . The
following lemma shows a stronger necessary condition for a link
to be a key link.

Lemma 1: If is common to all the
shortest paths from to .

The forwarding table entry under FIR is computed ex-
cluding all the key links. There is always a path from to
without one key link by the definition of key links. But it is not
intuitive whether there is still a path from to when all the key
links are removed. Theorem 2 shows that is still reach-
able from even when all the key links are removed from
the network topology.

Theorem 2: Given , there exists a path from to
in .

The following lemma shows that the path from to com-
puted without one special key link is the same as the path com-
puted without all the key links. This property can reduce the
complexity of the next hop computation.

Lemma 2: If and is the closest5 link to
among the links in , then

.
Since a node computes its forwarding tables independently,

even though there exists a path from to without as
given by Theorem 2, other nodes might choose a different path,
which might lead to a loop. Theorem 3 shows that all the nodes
along the path from to choose the same path. Before we prove
Theorem 3, we need the following two lemmas.

Lemma 3: If and , then
.

Lemma 4: Let the link be the closest link to the des-
tination among the links in . For any link on

, if , the link is also the closest
link to among the links in .

Theorem 3: If there exists a path from a source to a destina-
tion without a unidirectional link or bidirectional link

, suppression of its failure notification under FIR does not
cause a forwarding loop.

Proof: We first prove the case under the failure of a unidi-
rectional link . If the shortest path from to does not
contain the failed link , the forwarding path under FIR
is identical to that under OSPF according to Theorem 1. So, we
only need to prove that there is no loop to from the nodes
and that are adjacent to the failed link .

Let the failure scenario be as shown in Fig. 5. If
and , i.e., is not a next hop from to and is not
a next hop from to , then there is no loop to because any
packet with the destination arriving at or will not traverse
the failed link. So without loss of generality, we need to prove

5Since all the links inK are common to all the shortest paths from i to d,
it is possible to order them according to their relative closeness to d.

Fig. 5. Link failure scenario.

that there is no loop from to in the graph , where
, because any packet arriving at will be forwarded

to without causing any loop.
Let . If , then the shortest

path from to does not contain . We prove
this by contradiction. Suppose contains . By the
definition of key links, implies . So,
there must be a shorter path from to than the link

itself. Since does not contain cannot
be in because the shortest path from to

would not be . This is a contradiction.
Since the shortest path from to does not contain and

is empty, there is no loop along the path from to .
Now, consider the case where . Let be the

closest link to the destination among the links in . By
the definition of key links, . All we need to show is that

, for all along the path
because exists as per Theorem

2. Due to space limitation, this part of the proof is omitted here
but can be found in [11].

To show that the theorem holds true even when a bidirectional
link fails, all we need to show is that does not
contain the link . If , then
does not contain because . If , by
definition of keylinks, . So, is the shortest
path from to and does not contain any link in .
Suppose contains the link . Then, the
length of the path from to via in is the same
as that of , which implies that has a shorter path through

to than the path through to , and thus contradicts
. So, in both cases, does not contain the

link . Therefore, when a unidirectional or bidirectional
link failure is suppressed, FIR can guarantee delivery of a packet
if there exists a path to its destination.

III. EFFICIENT FIR ALGORITHMS

The procedure for computation of key links and forwarding
tables presented in the previous section works correctly in en-
suring loop-free forwarding while handling single suppressed
link failures. However, the KEYLINKS algorithm is brute-force
in that each link is considered a candidate for being a key link
and checked to see if that link satisfies the two conditions given
in Section II-B. Alternatively, a small set of candidates can be
identified quickly first, which can then be verified to determine
the set of key links. The running time of key link computation
can be further improved by saving the intermediate steps of pre-
vious computation of key links and computing the new set of
key links incrementally instead of from scratch. In this section,
we describe efficient algorithms based on these ideas for com-
puting interface-specific forwarding tables.
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Instead of considering each link as a candidate key link, we
can trim the set of candidates by utilizing the following proper-
ties of key links. Only the failure of a link along the shortest path
from node to a destination may require unusual forwarding
of packets to arriving at . Otherwise, packets are forwarded
simply along the usual shortest path. So, the set of candidate links
can be limited to only the links in the shortest paths tree rooted
at . Given that the number of links in a shortest paths tree are

, the number of candidates would reduce from to
. In addition, a link is not considered a candi-

date key link for destination and interface , if without
is not a next hop from to , i.e.,

if . This is a less restrictive condition than the
second condition given in Section II-B but more efficient to verify
using Incremental SPF (ISPF) procedure on shortest paths tree
rooted at .ISPF adjusts an existing shortest path tree instead of
constructing it from scratch. The complexity of ISPF is propor-
tional to the number of nodes affected by the link failure which
on the average is much less than . The resulting small set of
candidates can then be checked against the exact conditions in
Section II-B to determine the exact set of key links.

A. Available Shortest Path First

Algorithm 2: ASPF (i)

1: /* initialization */
2: for all do
3: for all do
4:
5:
6: /* identify key links */
7:
8: for all and do
9:

10:
11: for all do
12:
13:
14:
15: if then
16:
17: if then
18: for all do
19:
20:
21: /* compute forwarding entries */
22: for all do
23: for all do
24: if then
25: Let be the link closest to
26: if then
27:
28:
29: else
30:

We now present an efficient algorithm for computing for-
warding and backwarding tables. We refer to this procedure as

available shortest path first (ASPF) since it computes shortest
paths excluding the unavailable (potentially failed) links. It uses
two procedures SPF and ISPF that are not shown here. The ar-
guments to SPF include the root , the set of interested destina-
tions , and set of edges . It creates from scratch a shortest
paths tree rooted at , having only the edges in , and spanning
all the nodes in with only the nodes in as leaf nodes. The
arguments toISPF include the tree corresponding to the edge
set , the set of (failed) edges to be removed and the set of
interested destinations. It returns a new tree spanning all nodes
in with only nodes in as leaf nodes without the links in .

TheASPFprocedure is given in Algorithm 2. In theASPFpro-
cedure, the sets of candidate links are first initialized to (lines
2–4). Then the shortest path tree rooted at is computed using
SPFprocedure (line 7). Each neighbor that is a next hop to some
destination is considered in turn (line 8). If a neighbor is not a
next hop to any destination, the key links for the corresponding
interface remain . Otherwise, is the next hop to all the
nodes in the subtree that follows . Only the links in
this subtree could be key links for the nodes .
So, the search for key links is restricted only to (lines
9–10). A SPT without each of these edges is in-
crementally computed using ISPF (line 13) from which was
computed earlier usingSPF (line 9). These SPTs are partial trees
computed to span only the affected nodes that follow in tree

(lines 12–13). The set of destinations for which is a next hop
from with and is next hop from without is
given by (line 13). Only for those destina-
tions could be a key link (line 14). Now, we need to verify
whether the candidate link satisfies the condition (2) to be
a key link. The final verification is done by building a tree rooted
at covering all the nodes in without the link (line 16)
and checking if it contains the edge (line 17). If so, link

is included in the set of key links for all the nodes in
that follow in the tree (lines 18–19).

The computation of forwarding tables is a relatively simple
task once the key links are determined. When is empty, the
corresponding interface-specific forwarding entry would
be the same as interface-independent routing entry (line 30).
Otherwise, is the set of next hops from to without the
key links . This computation can be simplified by taking
advantage of the Lemmas 1 and 2. According to Lemma 2, the
shortest path from to without ’s nearest key link is the same
as the shortest path without all its key links. From Lemma 1, we
know that there is exactly one such link. Hence, can be
obtained simply by excluding the link nearest to among
all the key links (line 25–28).

We now analyze the complexity of theASPF procedure. There
are invocations of SPF once for the node and once for
each neighbor of . Then for each link in the SPT rooted at ,
ISPF is invoked once on the SPT of corresponding neighbor
(line 13), i.e., a total of ISPF invocations. The running
time of an incremental algorithm such as ISPF depends on the
number of nodes affected (requiring recomputation of paths) by
the changes in the edge set. So, let us measure the complexity
in terms of the affected nodes. Only those nodes that are below
the link are affected by the removal of . A node is affected by
the removal of any of the links along the path to it from the root.
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The number of link removals (theISPF computations) affecting
a node in the worst case would be the diameter of the network

. So, the total number of affected nodes due to ISPF
invocations would be . Since regular SPF computa-
tion has to start from scratch, we can say that the affected nodes
are . So, the complexity of candidate link computation is

times regularSPF computation. To determine
the set of key links, each candidate link is then subjected to
the check in line 17, which requires building a SPT . How-
ever, this computation is not necessary for the candidate links that
are adjacent to some neighbor of , in which case, line 13 and 16
yield the same. We have actually found that the candidate link set
except in rare cases is the same as the key link set and that most
of the key links are adjacent to a neighbor of . Therefore, the
time to determine key links is dominated by the time to identify
candidate links. Similarly forwarding tables computation time
is dominated by the time for candidate link computation. There-
fore, considering that diameter can be approximated by
and SPF takes , the complexity of ASPF is

.

B. Incremental ASPF

Algorithm 3: IASPF

1: /* initialization */
2: for all do
3: for all do
4:
5:
6: /* determine key links */
7:
8: for all and do
9:

10:
11: for all do
12:
13: if or or then
14:
15:
16: if then
17: if or or

then
18:
19: if then
20: for all do
21:
22:
23: /* compute forwarding entries */
24: for all do
25: for all do
26: if then
27: Let be the link closest to
28: if then
29:
30:
31: else
32:

The previously described ASPF procedure computes for-
warding tables efficiently and thus makes the deployment of
FIR feasible. Its running time can be further improved by saving
the intermediate steps of the previous computation of these
tables (corresponding to the previous global update) instead
of obtaining them from scratch. We devised an incremental
version of ASPF referred to as IASPF that takes advantage
of the saved information in determining new key links and
tables when an update is received notifying the failure of a link.
IASPF remembers rooted at for each neighbor , and
the partial trees for each edge in and
for each key link . The space requirement for IASPF is

which is certainly viable.
The procedure IASPF shown in Algorithm 3 is quite similar

toASPFwith some changes to take advantage of the saved infor-
mation from the previous computation. The procedure is shown
only for a link down event. A link up event can also be treated
analogously. Suppose the failed link is . WhileASPF uses SPF
(line 7), IASPF invokes ISPF to compute new without link

based on the saved old (line 7). Likewise, a new is com-
puted for each neighbor using old (line 9). A tree is
reused if it exists and spans all the nodes affected when
is down without including the failed link (line 13). Otherwise,
a new such tree is constructed by invoking IASPF. Similarly, a
tree is recomputed only if does not exist or does not span
all the nodes affected when is down or contains the failed
link (line 17). Since these trees are partial trees and a link is
not part of many such trees, a large fraction of tree computations
can be avoided.

We show in Section V-B that IASPF computation is equiv-
alent to a small number of SPF computations. Now let us look
at the additional space required for storing these partial trees.
As mentioned earlier, a node is affected by all the links along
its path from the root and their count in the worst case would
be the network diameter . So a node would be a member of at
most partial trees. The space needed for a partial tree in the
worst case would be times the number of affected nodes in
it. So, the total space requirement of IASPF for all the trees put
together would be .

IV. PROACTIVE AND REACTIVE APPROACHES:
MODELING AND ANALYSIS

In OSPF, link-state changes need to be propagated quickly to
reduce the service disruption. However, triggering a link-state
advertisement (LSA) immediately after a failure may create
routing instability. Current OSPF implementations use a small
suppression period (called carrier delay in Cisco routers) to
filter out short-lived link failures. Recent research [1] suggested
shortening the carrier delay from its default value of two
seconds to the order of milliseconds. However, this raises the
concern over the potential network instability. On the other
hand, FIR is designed to minimize the forwarding discontinuity
while ensuring routing stability through suppression of failure
notifications. In this section, we try to understand the tradeoffs
involved in the choice of whether or not to suppress link failures
and how long to suppress. Towards this goal, we build a formal
model to analyze the network stability and availability under
both proactive and reactive approaches to failure resiliency.
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Fig. 6. Link events and effects with suppression.

A. Network Stability

The status of a link can be viewed as a two-state random
process: is either up or down. We denote the transition rates
between the two states by and . We model the time to fail
of (i.e., the time between a link down event and its immedi-
ately precedent up event) as a random variable , and the cor-
responding time to repair as . Since recent studies [1] show
that the majority of link failures are short-lived, we model the
time-to-repair with a heavy tailed distribution as follows,6

. For , as we shall see later, only the

mean and not the exact distribution matters in our models of
network stability and availability.

Now, consider the failure events of link . When a link failure
is detected, the adjacent routers will suppress it for a suppres-
sion interval . If the link recovers before the suppression in-
terval expires, the suppression is “successful,” and no LSA is
propagated for this failure; otherwise, an LSA is propagated at
the end of the suppression interval. Once an announced down
link come up again, it will be announced immediately with a
new LSA. Fig. 6 illustrates a sequence of link events and their
consequences. It shows three link failure events followed by
their corresponding link recovery events. The first two link fail-
ures are successfully suppressed, while the last failure generates
two LSAs—announcing link down at time and link up at ,
respectively.

As an LSA propagates across the network, each router re-
computes its own routing information base (RIB) and update
the forwarding information bases (FIBs). We say the network is
in transient state for the time window between announcement
of the LSA and the FIB update of the last router in the network;
otherwise, the network is in stable state. We regard this transient
period due to one link event as the convergence delay and de-
note it by . Let be the time when the th LSA for link is
announced, then the network state can be characterized by the
following indicator function:

if
otherwise.

indicates that the network is in stable state at time .
For ease of exposition, hereafter, we drop the superscript .

6We obtain the previous function by adapting the generalized Pareto density
function f(x) = ab x ; shifting it by b to the left, and setting its mean

to . In this way, � is defined on (0;+1); E(� ) = , and b is a
scale parameter of the heavy tail distribution. Note that when b is very large, the
probability distribution function of � resembles that of an exponential random
variable. For this reason, we do not explicitly derive another model based on
exponentially distributed � .

We now derive the fraction of time the network is in stable
state, i.e., . We first define the time between two
consecutive (propagated) link up events as a cycle, denoted by
(e.g., between and in Fig. 6). The period can be viewed
as several successful suppressions followed by an unsuccessful
suppression. Given the suppression interval , the success rate
of suppression is

Let the random variable represent the number of trials for
an “unsuccessful” suppression to occur, then . A
cycle is composed of number of time-to-fail intervals,
number of time-to-repair intervals with the condition that each
of them being less than (we denote these conditional random
variables by ), and one time-to-repair with the condition that it
being larger than (we denote this conditional random variable
by ). Therefore, we have7

During the entire cycle , there are two transient periods: thick
straight and dashed horizontal lines as shown in Fig. 6. We de-
note the period following the first LSA by and the period
following the second LSA by . The length of de-
pends on the time between and (as shown in Fig. 6). If

, then equals ; otherwise, equals
. Therefore, we have

We assume that the time between and is always longer
than (note that this is always true as long as ), therefore,

always equals . Therefore, the fraction of stable period
of the network is

So far, we have been focusing on the network stability when
only one link in the network is subject to failures. Assuming
that time-to-repair of different links in the network are i.i.d., the
stability fraction of the network is

, where and
is the number of links in the network.

7The derivation utilizes Wald’s equation [12].



368 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

B. Network Availability

We define network availability as the fraction of time the
network is able to forward packets between all source-desti-
nation pairs. Since a forwarding loop is possible during the
network transient period, we consider all the network transient
periods as unavailable time for both OSPF and FIR.8 Besides,
under OSPF, when a router suppresses a failed link, forwarding
between some source-destination pairs could be disrupted.
We, therefore, count suppression periods too as unavailable
time under OSPF. On the other hand, we have shown that
FIR guarantees forwarding correctness when at most one link
failure is suppressed. Therefore, we will derive a loose lower
bound on network availability under FIR by counting all the
multiple suppressed link failure periods as network unavailable
time. Since only a specific scenario of failures of links along
the shortest path and the alternate path can cause looping (also
confirmed through simulation results), we further develop a
formula for availability under FIR by considering the network
as unavailable only when more than two link failures are
suppressed simultaneously.

1) Availability Under OSPF: Consider service unavailable
time in each cycle under OSPF. We already have the unavail-
able time due to network transients. We denote the length of the
suppression periods in a cycle by . is the other compo-
nent of the network unavailable time. From Fig. 6, we can see
that consists of successfully suppressed link down
periods and one full suppression interval . Therefore

We define the fraction of time as a link is suppressed in a cycle
as . Then, the availability of the network is

The OSPF availability considering all links in the network is
then .

2) Availability Under FIR: We first derive a lower bound
on FIR availability, which contains the following two types of
periods in a cycle: when none of the links is causing transient
state or being suppressed and when exactly one link in the net-
work is suppressed, and all other links are neither suppressed
nor causing transients. Therefore, the lower bound can be rep-
resented in the following formula, which we will refer to as
“FIR-1:”

Next, we consider two simultaneously suppressed link fail-
ures also as network available time under FIR. We need to add
the following periods in a cycle to the available portion: periods
when exactly two links in the network are being suppressed,

8Even during the transient period, forwarding between all node pairs may be
possible depending on the failed link and the network topology. However, for
ease of modeling, we assume any transient period as unavailable time.

Fig. 7. Impact of failure frequency on network: (a) stability and (b) availability.

and all other links are neither suppressed nor causing transients.
Therefore, our second formula (dubbed “FIR-2”) for network
availability under FIR is

We refer the readers to [11] for the exact analytic form of
and since they are rather tedious.

C. Performance Evaluation

We now compare the performance of OSPF and FIR under
various parameter settings. The parameters captured in our
model are: , and . These parameters are set to
the following default values unless otherwise mentioned:

(1 day), , and
. The choice of these default settings is mainly based

on the recent empirical measurement results of an operational
network [1]. To match the characterization that many failures
are short-lived, we choose and such that 50% of the link
failure durations are less than 1 min.

Fig. 7(a) shows the stability of the network as a function of
failure frequency, i.e., the mean number of failures per day for
each link. We vary the failure frequency from 0.5 to 2 failures
per day [2], and plot the stability for 0, 60, 120, and 300 s.
As expected, the network is more stable when the failure fre-
quency is low. More importantly, the stability can be improved
significantly even when failure frequency is high by choosing
a large suppression interval. However, this would have adverse
impact on the availability under OSPF while FIR achieves high
availability by local rerouting during the suppression period as
shown in the following.

In Fig. 7(b), we plot the availability of the network with the
same set of parameters as in Fig. 7(a). As mentioned before,
unavailability of the network is due to either transient or sup-
pression periods. The transient component is shown in Fig. 7(a).
Under OSPF, since , there is no suppression. The avail-
ability of the network, therefore, equals the network stability
shown in 7(a). The FIR-1 (with ) curve shows that the
availability under FIR is higher than that under OSPF (with

) and all the three FIR-2 curves show significant im-
provement over OSPF. FIR-2 with performs best when
failure frequency is low to medium, and performs al-
most as well when failure frequency is high.
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Fig. 8. Network unavailability. (a) OSPF. (b) FIR-1. (c) FIR-2.

Fig. 9. Network availability under various settings. (a) Transient failures. (b) Convergence delay. (c) Network size.

We show the breakdown of total unavailability into unavail-
ability due to transients and due to suppressions in Fig. 8.
Fig. 8(a) shows this breakdown for OSPF. We see that as the
value increases, the unavailability due to transients decreases.
However, the unavailability due to suppression period increases
much faster. Therefore, OSPF ends up best with . This
behavior of OSPF exhibited in almost all of our experiments
demonstrates that under OSPF attempts to increase stability
with suppression would decrease availability.

Fig. 8(b) and (c) show the breakdown of unavailability for
FIR-1 and FIR-2, respectively. The unavailability due to tran-
sients under FIR-1 and FIR-2 is the same while the unavail-
ability due to suppression is much lower in FIR-2 than in FIR-1.
Therefore, the optimal for FIR-2 is much larger than for FIR-1.
As we will show in the simulation results, the behavior of FIR
resembles FIR-2 much more closely. Comparing FIR and OSPF
using Fig. 8(a) and (c), we see that FIR is able to eliminate al-
most 90% of the network unavailability suffered by OSPF.

We now study the network availability under various pa-
rameter settings. In Fig. 9(a), we vary the fraction of transient
failures (i.e., lasting less than 1 min) by fixing and
varying . Fig. 9(a) shows that when larger fraction of the
failure durations are transient, FIR can achieve higher avail-
ability, since suppression is more effective. Fig. 9(b) shows the
network availability over different values of , the convergence
delay. It shows that as increases, availability decreases,
for both FIR and OSPF. This is because longer convergence
delay means longer transient periods, which hurts both OSPF
and FIR. However, as the figure shows, FIR is less sensitive
to than OSPF. Finally, we plot the network availability as
a function of the number of links in Fig. 9(c) to study the
scalability characteristics of FIR. These results demonstrate
that FIR scales well as the network size increases.

V. SIMULATION RESULTS

We now evaluate the performance of the FIR scheme using
simulations and demonstrate its failure resiliency and forwarding
efficiency. We first validate the model presented in the previous
section with the simulation results. We then compare the network
availability under FIR with that under OSPF in various settings.
We also show that compared to the optimal shortest path routing
the extent of path elongation due to local rerouting by FIR is
not significant. Finally, the relative computational complexity
of ASPF and incremental ASPF algorithms w.r.t. Dijkstra’s SPF
algorithm is presented to affirm that FIR is viable.

The simulation setting can be briefly described as follows.
The simulations are conducted on random topologies generated
by the BRITE topology generator tool, which implements a va-
riety of topology generation algorithms. We have experimented
with topologies of different size (number of nodes) and den-
sity (average degree of nodes). The default number of nodes is
100 and the number of links is 197. The weights of links are
assigned randomly from 100 to 300. The default values for var-
ious parameters of the simulation are set to the same as those of
Section IV.

A. Network Stability and Availability

In Section IV, FIR-2 treats the network as unavailable when-
ever more than two link failures are suppressed simultaneously.
Actually, FIR can continue forwarding packets in some cases
of more than two suppressed link failures. So in the simulation,
for any duration when 2 or more link failures are suppressed
simultaneously, we checked the reachability of all the source-
destination pairs by traversing the network using the interface-
specific forwarding tables of FIR to see whether there exists any
forwarding loop or packet drop. If there is a forwarding discon-
tinuity, we count the duration as unavailable time. By doing this,
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Fig. 10. Model versus simulation.

Fig. 11. Availability: OSPF versus FIR.

we can find the exact availability of FIR. To evaluate how well
FIR-1 and FIR-2 approximate the actual unavailability due to
the suppression period, we count the durations when 2 or more
link failures are suppressed (FIR-1) and the durations when 3 or
more links are suppressed (FIR-2).

In Fig. 10, we plot the total unavailability with the actual FIR,
FIR-1, and FIR-2. It can be seen that the curves of FIR-2 and FIR
are almost the same, and as increases FIR shows better avail-
ability during the suppression period than FIR-2. This means
that FIR can handle most of the suppressed double link failures
and even some of the more than two suppressed failures. Since
the unavailability due to the transient period is the same for both
FIR-2 and the actual FIR, the total unavailability is almost the
same. Even though the model of FIR-2 is simple, it captures the
behavior of FIR very well.

We now compare the performance of FIR with OSPF in terms
of network availability and stability. We know that stability can
be improved by increasing the suppression interval. This is true
for both FIR and OSPF. The difference is in the impact of in-
creased suppression interval on the availability. Fig. 11 plots the
availability of OSPF and FIR as a function of the suppression in-
terval. In the case of OSPF, suppression interval is applied only
to link up events whereas link down events are notified instantly.
As expected, under OSPF, attempts to increase stability would
not increase availability. On the other hand, under FIR, avail-
ability improves as the suppression interval increases. This is be-
cause FIR performs local rerouting during the suppression pe-
riod. Though there is a possibility that longer suppression in-
terval increases the probability of multiple overlapping failures
occurring during the suppression period, it is more than offset by
the reduced unavailabilitydue to the transient periods. Therefore,
FIR can improve both stability and availability of a network.

We now show the effect of convergence delay on the avail-
ability in Fig. 12(a), which shows similar trends as in Fig. 9(b).

Fig. 12(b) has the same parameter settings as in Fig. 7(b). The
simulation results for FIR are better than that of the model in
particular when which is expected. In Fig. 12(c), we
plot the effect of the fraction of transient link failures on the
availability. As the fraction of transient link failures increases,
FIR shows better availability. When the fraction is 0.8, FIR can
achieve more than 99.5% availability.

B. Forwarding Table Computation Complexity

As explained before, the main change required in the control
plane for the deployment of FIR is the replacement of traditional
interface independent routing table computation algorithm with
an algorithm for computing interface dependent forwarding ta-
bles. This algorithm is invoked only when a link failure lasts
longer than a suppress interval and a global update is triggered.
This computation is done while packets to the affected desti-
nations are locally rerouted. Therefore, unlike in the existing
routing schemes, the running time of the FIR algorithms does
not affect the reachability of destinations. Nevertheless, it is de-
sirable to reduce the computational overhead on a router. Here,
we evaluate the running time of the FIR algorithms ASPF and
IASPF.

We measured the time complexity of all these SPF-based al-
gorithms in terms of the number of distance comparisons made
as was done in [13]. The distances of two nodes are compared
for updating distance of one of them or for readjusting the pri-
ority queue after an extract or enque operation. The com-
parison count of ASPF and its incremental version IASPF are
shown in Fig. 13(a) for varying size topologies with average
node degrees 4 and 6. The relative performance of these algo-
rithms are shown w.r.t. well-known Dijkstra’s SPF algorithm.
Since Dijkstra’s algorithm is widely deployed, using it as a ref-
erence helps in assessing the computational complexity of these
algorithms. We have also measured the actual running time of
these algorithms on Intel Xeon 2.80-GHz CPU and plotted them
relative to SPF computation time in Fig. 13(b). The memory-
less ASPF procedure takes around 16 ms, i.e., 22 times longer
than SPF for computing forwarding tables from scratch for a
200-node topology. The incremental procedure IASPF, using
an additional space of , takes around 4 ms which is equiv-
alent to 6 SPF computations. It should be noted that several code
optimizations are possible to further improve the running time
of these algorithms.

C. Path Length Stretch

Under FIR, only the node adjacent to a failed link is aware
of the failure and all other nodes are not. So, a packet takes the
usual shortest path till the point of failure and then gets rerouted
along the alternate path. Consequently, in the presence of link
failures, FIR may forward packets along longer paths compared
to the globally recomputed optimal paths based on the link state
updates. For example in the topology of Fig. 1, when the link
2–5 is down, packets from 1 to 6 are forwarded along the path

. Had node 1 been made aware of the
link failure, packets would be forwarded along the shorter path

. However, we show that the extent of this
elongation is not significant. Let stretch of a path between a pair
of nodes be the ratio of the lengths of the path under FIR and the
optimal shortest path. When the weights of all the links are not
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Fig. 12. Simulation results under various settings. (a) Convergence delay. (b) Failure frequency. (c) Transient failures.

Fig. 13. Complexity of FIR: (a) comparisons and (b) running time.

same, path length is said to be the sum of the weights of its links.
Without any link failures, there is no difference between the FIR
paths and the optimal shortest paths. So, the stretch is 1. We have
measured the mean and the median stretch due to FIR for the
pairs of nodes affected by link failures for random topologies of
various sizes. Across all topologies, average stretch is less than
1.2 and in most cases it is close to 1.

VI. RELATED WORK

There have been several proposals for mitigating the impact
of link failures on network performance. References [14] and
[15] address the issue of assigning weights to links such that
the traffic is balanced across the network even in the presence
of link failures. These schemes can be thought of as preparing
for link failures in terms of reducing overload while FIR is
concerned with increasing availability. As mentioned earlier,
guaranteeing reachability is found to be an overriding concern
than avoiding congestion in a backbone network [16]. More-
over, these schemes can be used in conjunction with FIR. A
detailed analysis of the sources of delay in routing reconver-
gence after a link failure is provided in [3] and [4]. They suggest
tuning various parameters related to link state propagation and
routing table computation for accelerating the convergence and
reducing the downtime. This may not be the best recipe for han-
dling common transient link failures. The objective of FIR is to
make forwarding insensitive to the parameter values chosen for
accelerating convergence and insuring stability.

A recent work that is quite similar to FIR is reported in [17].
It presents an approach that protects against a failure by first de-
termining a loop-free alternate next hop and if it is not available,
then determining a U-turn alternate. This approach requires im-
plicit or explicit identification of U-turn traffic. FIR, though
similar in effect, is based on a generic framework that exploits
interface-specific forwarding for local rerouting, and does not

require marking of packets or incur additional per packet for-
warding overhead. Another recent work closely related to FIR
is the deflection routing proposed in [18]. The basic idea un-
derlying their approach is to select a next hop node based on
strictly decreasing cost criterion. While deflection routing guar-
antees loop-free paths, it may not always find such a path even
if one exists. For example, in a simple triangle topology when
a link with the smallest cost goes down, the corresponding pair
of nodes are not reachable. Apart from this last hop problem,
deflecting routing requires that the weights of links satisfy a
certain condition. FIR imposes no such restrictions on weight
assignment and assures loop-free forwarding to any reachable
destinations in case of single link failures. An approach based on
multiple alternate paths at every node to facilitate local failure
reaction is proposed in [19]. This approach requires addition of
“joker” links and increases the link loads in normal operation.
FIR, on the other hand, needs no modifications to the topology
and deviates from normal forwarding only when a link fails.
An algorithm proposed in [13] performs local restoration by in-
forming only the routers in the neighborhood about link failure
events instead of all routers. FIR achieves similar effect without
requiring any changes to link state propagation mechanism. An
application layer solution is proposed in [20] for detecting and
recovering from path outages using a resilient overlay network.
While RON is an attempt to overcome the slow convergence of
BGP based inter-domain routing, FIR is a remedy for outages
in intra-domain routing.

Some recent studies [6] on the interaction between intra-do-
main and inter-domain routing have observed that even a
relatively small internal link-state changes can cause a large
churn of external routes. This is because of the way Border
Gateway Protocol (BGP), the de facto inter-domain routing
protocol of the Internet, selects routes. When multiple equally
good inter-domain routes are available, BGP selects the
inter-domain route associated with the closest egress point
based on the intra-domain path metrics. This policy of selecting
a BGP route associated with the nearest exit based on IGP
metric is referred to as hot-potato routing. Since it is common
that an AS connects to another AS at multiple locations, due to
hot-potato routing, quite often BGP routes are chosen based on
the IGP metrics. Consequently, intra-domain instabilities can
induce inter-domain route swings. FIR ensures that BGP peers
are reachable from each other without changing IGP metrics,
by suppressing transient failures and yet forwarding packets
during the suppression period. Thus, FIR improves the stability
of not only intra-domain but also inter-domain routing.
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VII. CONCLUSION

We have presented a proactive failure insensitive routing
approach as an alternative to the reactive approach of the ex-
isting link state routing protocols such as OSPF/ISIS for failure
resiliency. We have described how FIR prepares for failures
by computing interface-specific forwarding and backwarding
tables, and proved that it ensures reachability of packets to their
destinations through local rerouting while suppressing transient
single link failures. We have developed a formal model to analyze
the routingstabilityandnetworkavailabilityunderbothproactive
andreactiveapproaches, andvalidated it throughsimulations.We
have shown that FIR providesbetter stability and availability than
OSPF across various failure frequencies, convergence delays,
and network sizes. Our results indicate that the improvement due
to FIR is markedly better when link failures are frequent and tran-
sient. There are several issues related to FIR that require further
investigation. The schemes presented here assume a forwarding
table per each interface and are applicable to single area networks
of point-to-point links with symmetric weights. We are working
on extending the FIR approach to networks with asymmetric
links, broadcast LANs, and multiple areas, and also its incre-
mental deployment to make the case of FIR more compelling.
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