Failure Insensitive Routing for Ensuring Service
Availability *

Srihari Nelakuditt, Sanghwan Leg Yinzhe Y\?, and Zhi-Li Zhang

! Dept. of Computer Science & Engineering,
University of South Carolina,
Columbia, SC 29201, USA
srihari@cse.sc.edu
2 Dept. of Computer Science & Engineering,
University of Minnesota,
Minneapolis, MN 55414, USA
{sanghwan,yyu,zhzhang }@cs.umn.edu

Abstract. Intra-domain routing protocols employed in the Internet route around
failed links by having routers detect adjacent link failures, exchange link state
changes, and recompute their routing tables. Due to several delays in detection,
propagation and recomputation, it may take tens of seconds to minutes after a
link failure to resume forwarding of packets to the affected destinations. This
discontinuity in destination reachability adversely affects the quality of contin-
uous media applications such as Voice over IP. Moreover, the resulting service
unavailability for even a short duration could be catastrophic in the world of e-
commerce. Though careful tuning of the various parameters of the routing pro-
tocols can accelerate convergence, it may cause instability when the majority of
the failures are transient. To improve the failure resiliency without jeopardizing
the routing stability, we propose lacal rerouting based approach callddil-

ure insensitive routingUnder this approach, upon a link failure, adjacent router
suppresseglobal updating and instead initiates local rerouting. All other routers
infer potential link failures from the packet’s incoming interfapegscomputen-
terface specific forwarding tables and route around failed limitsout explicit

link state updates. We demonstrate that the proposed approach provides higher
service availability than the existing routing schemes.

1 Introduction

Link state routing protocols such as OSPF and IS-IS are the most widely used protocols
for intra-domain routing in today’s Internet. Using these protocols, routers exchange
changes in link state, recompute their routing tables, and thus respond to link and node
failures in the network by routing around them. However, several recent studies [1,5,
7] have reported that rerouting after a link failure takes tens of seconds to minutes. Dur-
ing this period, some destinations would be unreachable and the corresponding services

* This work is partly supported by National Science Foundation Grants CAREER Award ANI-
9734428, ANI-0073819, and ITR ANI-0085824. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

unavailable. This discontinuity in routing adversely affects the quality of continuous
media applications such as Voice over IP. Furthermore, downtime of even a few sec-
onds could significantly impact the reputation and the profitability of a company in the
world of e-commerce. Moreover, it has been observed [7] that link failures are fairly
common in the day to day operation of a network due to various causes such as main-
tenance, faulty interfaces, and accidental fiber cuts. Hence, there is a growing demand
for ensuring destination reachability and thus service continuity even in the presence of
link failures.

There have been some modifications proposed [1, 2] for accelerating the conver-
gence of link state routing protocols. But the recipe involves tuning several delays as-
sociated with link failure detection, link state propagation and routing table recompu-
tation. Furthermore, it is not a suitable solution for handling transient failures. It has
been found [7] that majority of the link failures are short-lived with around half of the
failures lasting less than a minute. In such a scenario, it is not prudent to disseminate
these link state changes globally and recompute routing tables at each router in the
network. Instead, it is much more appropriate to perform local rerouting and trigger
global updating and recomputation only if the link failure persists for a longer duration.
Such a local rerouting approach can recover promptly from failures trading off opti-
mality of routing for continuity of forwarding. Our objective is to devise a stable and
robust routing scheme that ensures continuous loop-free forwarding of packets to their
destinations regardless of the various delays in link state propagation and routing table
recomputation.

We propose a local rerouting based approach for failure resiliency which we refer
to asfailure insensitive routingFIR). Under FIR, when a link fails, adjacent nodes
suppress global updating and instead initiate local rerouting of packets that were to be
forwarded through the failed link. Though other nodes are not explicitly notified of the
failure, theyinfer it from the packet'dlight. When a packet arrives at a node through
an unusualinterface (through which it would never arrive had there been no failure),
corresponding potential failures can be inferred and the next hop chosen avoiding those
links. This way under FIR, the next hop for a packet is determined based on not only
the destination address but also the incoming interface. Note thatirsiecface spe-
cific forwardingis very much feasible with current router architectures as they anyway
maintain a forwarding table at each line card of an interface for lookup efficiency. These
interface specific forwarding tables canfrecomputedince inferences about the link
failures can be made in advance. Thus with the FIR approach, when a link fails, only the
nodes adjacent to it locally reroute packets to the affected destinations and all the other
nodes simply forward packets according to their precomputed interface specific for-
warding tables without being explicitly aware of the failure. Once the failed link comes
up again, original forwarding tables are locally restored and forwarding resumes over
the recovered link as if nothing ever happened. This approach decouples destination
reachability and routing stability by handling transient failures locally and notifying
only persistent failures globally. Essentially with FIR, in the presence of link failures,
packets get locally rerouted (possibly along suboptimal paths) without getting caught
in a loop or dropped till the new shortest paths are globally recomputed.

There are several benefits in employing FIR. First, it can be deployed without al-
tering the destination based forwarding paradigm used in the current Internet. Only
the traditional interface independent routing table computation algorithm needs to be
replaced with an FIR algorithm for computing interface dependent forwarding tables.
Second, reachability of destinations does not depend on tuning of the various parame-
ters associated with link failure propagation and routing table recomputation. Thus FIR
improves the service availability without jeopardizing the routing stability. Third, under
FIR approach local rerouting happens only during the time a link failure is suppressed,
i.e., not reflected globally. But once all the routers have the same consistent view of the
network, forwarding under FIR would be no different from traditional routing. So FIR
can be used in conjunction with any other mechanism for engineering traffic. Finally,
FIR increases network reliability and obviates the need for expensive and complex layer
2 protection schemes. Essentially, the FIR approach is about preparing for failures in-
stead of reacting to them.

We make the following contributions in this paper. We propose a mechanism for
facilitating prompt local rerouting. We present an efficient algorithm that computes in-
terface specific forwarding tables for dealing with single link failure® €| log? |V|)
time, where) is the set of nodes anfl is the set of edges. We demonstrate that by
preparing for single link failures, most of the simultaneous failures can also be handled
and the service availability can be improved by an order of magnitude. We describe an
incremental algorithm for forwarding table computation that requiré®?|V|) space,
whereD is the network diameter, for remembering the intermediate steps of the previ-
ous computation but takes on average less 8| log |V|) time. We argue that with
its resiliency and stability, FIR is a better alternative to the existing routing schemes.

The rest of the paper is organized as follows. Section 2 introduces our FIR approach
for failure resiliency. Efficient algorithms for computing interface specific forwarding
tables are described in Section 3. Section 4 presents the results of our evaluation of
the performance of FIR. The related work is discussed in Section 5. Finally, Section 6
concludes the paper.

2 Failure Insensitive Routing

The fundamental issue in designing a local rerouting scheme is the avoidance of for-
warding loops. A straightforward local recomputation of new shortest paths without the
failed link by the adjacent node could result in a loop since other nodes are not aware
of the failure and their routing tables do not reflect the failure. We propose to address
this looping problem by forwarding a packet based on its incoming interface. This en-
ables a router tinfer failures when a packet arrives throughwamusualinterface due

to local rerouting. These inferences about link failures can be made in advance and in-
terface specific forwarding tables can ppecomputedavoiding the potentially failed
links. This way when a link fails, only the adjacent nodes reroute packets that were to
be forwarded through the failed link. All other nodes simply forward packets according
to their precomputed interface specific forwarding tables without being explicitly aware
of the failure. We refer to this approach faiure insensitive routingFIR). In the fol-

lowing, using an example topology, we illustrate how packets get forwarded under FIR
and how these forwarding tables are computed.

Fig. 1. Topology used for the illustration of the FIR approach

2.1 Forwarding under FIR

Consider the topology shown in Figure 1 where each link is labeled with its weight.
The corresponding shortest path routing entries at each node to destinatiof avede
shown in Figure 2. First, we point out the problem with the conventional routing in
case of a link failure. Suppose lirk-5 is down. When nodé@ recomputes its routing
table, it will havel as the next hop to reaghas shown in Figure 2. If only nod2
recomputes its entries while others are not notified or still in the process of recomputing
their entries, then packets froimo 6 get forwarded back and forth between nogdesd

1. This shows that using conventional forwarding tables, local rerouting is not viable as
it causes forwarding loops.

node|1(2(3[4|5 node [1(2(3(4|5
next|2|5|5(6|6| |nexthop|2|1|5|/6|6

Fig. 2. Routing entriesbeforeandafter local recomputation by node

Under FIR, forwarding loops are avoided by inferring link failures from the packet's
incoming interface. When a packet with destinatéoarrives atl from 2, nodel can
sense that some link must have failed. Otherwise, based on shortest path routirity, node
should never forward td, a packet destined fé. Node2 would forward packets fos
to nodel if the link 2-5 is down. Same is true even wh# is down. So when a packet
for 6 arrives atl from 2, nodel can infer that one or both of these links are down. Since
nodel is not explicitly notified of the failures, it can ensure that the packet reaghes
by forwarding it to4 avoiding both the potentially failed links-5 and5-6. That is why
in Figure 3, a packet arriving at nodewith destination6 through neighbor nodg is
forwarded to4 while it is forwarded te if it arrives through the other two neighbors.
Such interface specific forwarding makes it possible to perform local rerouting.

node| 1 21 31 4 5 node| 1 21 31 4 5
prev|[2|3|4|/1|5||1|5||1]6]|2 prev|[2|3|4|/1|5||1|5||1]6(|2
next|[4]2|2||5|1||5[1||6|-|/6|6|-]| | next||4|2|2]/1|-|/5|1||6|-|/6|6]-

w
»
w
(e}

Fig. 3. Interface specific forwarding entridseforeandafter local recomputation by nodz

Let us again consider the case of liak-5 going down. Node2 recomputes its
forwarding table entries as shown in Figure 3. So a packet fram6 takes the route
2—1—4—6 when the link2-5 is down. Since nodg is not aware of the failure, a packet
from 1 to 6 gets forwarded t@ which reroutes it back ta. Node1l then forwards the
packet tol according to its entry at the interface with previous Rojphis way, packets
from 1 to 6 traverse the patih—2—1—4—6. Note that though nodeappears twice in
the path, it doesn’t constitute a loop. With interface specific forwarding, a packet would
loop only if it traverses the same link in the same direction twice. Thus using interface
specific forwarding tables, FIR avoids looping and provides local rerouting.

It should be noted that FIR adheres to conventional destination based forwarding
paradigm though it has different forwarding table at each interface. While FIR requires
that the next hop for a packet is determined based on its previous hop, it is very much
feasible with the current router architectures as they anyway maintain a forwarding
table at each line card of an interface for lookup efficiency. The only deviation is that
unlike in the current routers with the same forwarding table at each interface, with the
FIR approach these tables are different. However, the forwarding process remains the
same — when a packet arrives at an incoming interface, the corresponding forwarding
table is looked up to determine the next hop and the outgoing interface.

2.2 Forwarding Table Computation

The forwarding process under FIR is essentially the same as it is under the conven-
tional routing. The key difference is in the way interface specific forwarding tables
are computed. The computation of the forwarding table entries of an interface involves
identifying a set of links whose individual or combined failure causes a packet to arrive
at the node through that interface. We refer to these linkeegidinksand denote by

IC;LQ- the set of links which when one or more down cause packets with destimition
arrive at nodeé from nodej. Note that this key link set is empty, i.dC;Li = (if nodes

is anyway the next hop along the shortest path fijicimd without any link failures. For

the topology in 1K$_; = {2-5,5-6} andK§_; = {3-5} while K$_, = () as explained
below.

Consider the nodé. The next hop along the shortest path from node reacht is
2,i.e,K% , = 0. So if all the links are up, nodeshould never receive froma packet
destined for6. However, if the link2—5 is down, node2 would forward packets with
destinatiort to nodel. Similarly when the links—6 is down, packets frori to 6 would
traverse the path—2—1—4—6. So from the arrival of a packet with destinati®from
neighbor node, nodel can infer that one or both of the links-5 and5—6 are down,

i.e., kS, = {2-5,5-6}. Similarly, nodel would receive a packet for the destination
through3 when the link3—5 is down. In the other case when ligk6 is down, packets
arrive at nodd through2 and not througis since froms to 6 the (recomputed) shortest
path would be&s—2—1—4—6. Hence from arrival of packets with destination 6 through
node3, nodel infers that only link3—5 is down, i.e.X$_; = {3-5}.

2—1 3—1 4—1
dest |2|3|4|5|6 dest |2[3]|4|5|6 dest |2|3|4|5|6
nexthopg - |3(4|3|4| |nexthopg2|-|4|2|2| |nexthopg2|3|-|2]|2

Fig. 4. Forwarding tables at node

Once the key links are determined, it is straightforward to compute the interface
specific forwarding tables. L&t be the set of all links in the network. Suppd8g(.X')
represents the set of next hops fromo d given the set of linkst'. Let }'f_,i denote the
forwarding table entry, i.e., the set of next hopsitéor packets arriving at through
the interface associated with neighbjorThis entry can be computed using Dijkstra’s
Shortest Path FirsSPF) algorithm after excluding the links in the s@;g from the
set of all linksE. Thus,

Fl=RIENKL)

The forwarding tables corresponding to nadef Figure 1 are shown in Figure 4.
Given thatK§ , = {2—5,5—6}, the shortest path fror to 6 without those links be
1—-4—6. Therefore, packets destined fbarriving atl through2 are forwarded to next
hop4. On the other hand, the next hop for packets to destinatemniving through? is
set to3 sincek’_, = {2-5}. The other entries are also determined similarly. Once the
forwarding tables are computed, packets arriving through an interface are forwarded
in the usual manner by looking up the table corresponding to that interface. We can
prove [12] that with forwarding tables computed thus, when no more than one link
fails, FIR always finds a loop-free path to a destination if such a path exists.

We reiterate that these inferences about potential link failures are nwddsn the
fly but in advance and forwarding tables are precomputed according to these inferences.
Furthermore, packets are forwarded according to their destination addresses only. In
other words, FIR does not require any changes to the existing forwarding plane, making
it amenable for ready deployment.

2.3 Local Recomputation of Forwarding Tables

The forwarding tables computed as explained above help perform local rerouting with-
out any global recomputation of routing and forwarding tables. Only the nodes adjacent
to a failed link have to recompute their entries. However, if the local recomputation
takes significant time, then there would not be substantial savings due to this approach

over conventional global updating based approach. Fortunately, we do not have to com-
pute these tables from scratch. It is possible to locally recompute the forwarding tables
in negligible amount of time by maintaining what we refer tdbaskwarding tabldor

each interface.

1—2 1—3 1—4
dest |2|3|4|5|6 dest [2|3|4|5|6 dest |2|3|4|5|6
back hops3|4|3|3|3| |backhops4|2|-|4|4| |back hops

1
[
N
1
1

Fig. 5. Backwarding tables at node

When an interface is down, its backwarding table can be used to reroute packets that
were to be forwarded through that interface. The entries in this table, denot@gﬂ,jby
give the set of alternate next hops, referred tbask hopsfrom nodei for forwarding
a packet with destinatiod when the interface or the link to the usual next hop npde
is down. The backwarding table entries can also be precomputed similar to forwarding
table entries once the key links are identified as follows:
Be

—J

= RUE\KL, \ i)

Essentially we exclude all the links that would cause the packet to exit from the interface
of ¢ to j and also the link—j itself in computing the back hops. When preparing for at
most single link failures, this amounts to
BL; < RI(E\ i)

The backwarding table entries for notef the topology in Figure 1 are shown in
Figure 5. Let us look at the entries for the interfaee?2. It is clear that when the link
1-2 is down, packets to destinatiopsb and6 be rerouted t8 since the shortest path to
these nodes without-2 is through3. But, it may not be obvious why the next hops for
destinations and4 are4 and3 respectively. Consider the entry&fThe corresponding
set of key linkskC3_, is {1-3}, i.e., a packet with destinatidhis forwarded froml to
2 only if {1-3} is down. So wher{1-2} is also down, the next best path is through
Similarly B , is 3. Now let us turn our attention to the backwarding table in Figure 5
for the interface—4. According to these entries, when lifkt is down, packets td get
rerouted t®2 and packets to any other destination are simply discarded as they are not
reachable. This is because packets to other destinations are forwardedltowhen
certain other links are also down. For examplé,,, = {2-5,5-6} and when linkl—4
also fails, nod& becomes unreachable from node

By employing interface specific forwarding and backwarding tables, we can elim-
inate the delay due to any dynamic recomputation and reroute packets without any
interruption even in the presence of link failures. The downside is that the deployment
of backwarding tables requires changes to the forwarding plane. When an interface is

down, the corresponding backwarding table needs to be looked up to reroute the packet
through another interface. This necessitates change in the router architecture, the cost
of which we are not in a position to assess. To avoid altering the forwarding plane, we
propose to maintain the backwarding tables in the control plane and recompute the for-
warding tables as follows. Suppose the failed link-is and the new forwarding tables

are denoted byF. Then the forwarding table entry of destinatiérior j— interface,
wherej # k, is computed as follows:

Fa_ FLi\kUBL, ifke}.";i_,»
= otherwise

The above expression takes into account the possibility of multiple next hops along
equal cost paths to a destination. A simplified expression for single path routing would
be

Fii = F4 otherwise
I

Essentially, only those entries in the forwarding tables that kaae the next hop are
reset according to the backwarding table associatediwithus, using the backwarding
tables, in case of an adjacent link failure, a node quickly recomputes the forwarding
tables locally and promptly resumes forwarding.

2.4 Summary of the FIR Scheme

We now summarize the operation of the FIR scheme. Eachhodder FIR maintains
a forwarding tableF;_; per each neighbof, and a backwarding tablg; ,; per each
neighborj. F;_; is used to forward packets arriving athrough neighboy. B;_; is
needed for locally recomputing the forwarding tables when the linki—j is down.

Suppose the failure of the link-j is detected by nodgat timet 4,.,,. Then node
1 locally recomputes its forwarding tables and performs local rerouting of the packets
that were to be forwarded tp If the failure persists for a preset duratidy,..., then a
global link state update is triggeredtat,...+74..» and forwarding tables at all routers
are recomputed. During the time period betweg,, andt own + Tdown, the link
failure update is said to lmuppressedince all the nodes other than the adjacent nodes
1 andj are not aware of the failure. Local rerouting is in effect when and only when
there exists a suppressed failure event.

After sometime, suppose at ting,, link i—j comes up. Then the action taken by
node: depends on whether the failure event is being suppressed or not. If the failure
event is being suppressed, original forwarding tables are locally restored and forwarding
resumes over the recovered link as if nothing ever happened. Otherwise, the link is
observed for a preset peridd,, and if it stays up, then at timg,, + T, a global
update is triggered announcing that the link is up. This way, failures of short duration
are handled locally while persistent failures are updated globally. When the failures are
transient, FIR not only improves reachability but also reduces overhead.

3 Efficient FIR Algorithms

The process of forwarding and backwarding table computation, as explained in the pre-
vious section, involves determining a set of key links for each interface of a node. In this
section, we develop efficient algorithms for identifying key links. We show that by sav-
ing some intermediate steps of the previous computation, forwarding and backwarding
tables can be obtained incrementally in time less than an SPF computation.

The algorithms described here assume that all the links are point to point, and bidi-
rectional with equal weight in both directions, which is generally true for the backbone
networks. It is also assumed that no more than one link fails simultaneously. There are
several reasons for concentrating on singe link failures. First, it has been observed [13]
that failure of a single link is more common than simultaneous multiple link failures.
Second, under FIR a failure ssippresseébr a certain duration and if it persists beyond
that time, a global update is triggered. Only simultaneous suppressed failures could pose
problem for FIR. The possibility of multiple simultaneous suppressed failures happen-
ing in the network is rare considering that suppress interval would be in the order of a
minute. Third, as we demonstrate in the next section, by preparing just for single link
failures, FIR can deal with the majority of the multiple simultaneous failures also.

3.1 Available Shortest Path First

We now present an algorithm for determining key links and computing forwarding and
backwarding tables. We refer to this procedurexeailable shortest path firgASPF

since it computes shortest paths excluding the unavailable (potentially failed) links.
The notation used here and the rest of the paper is listed in a table along with all the
algorithms. A straightforward method for determining key links would be to invoke Di-
jkstra’sSPFprocedure once per each link in the network. Its time complexity would be
O(|€|*1og [V]), which is too high to be practical. Fortunately, it is possible to compute
key links more efficiently for single link failures i®(|€|log® |V|) time based on the
following observations:

— Only the failure of a link along the shortest path from nade a destinationd
may requireunusualforwarding of packets t@ arriving ati. Otherwise packets
are forwarded simply along the usual shortest path. As perdahiseddefinition of
key links, for the topology in Figure X5 ,, = () instead of the original sg3—5}
since3—5 is not along the shortest path frohto 6. This new interpretation limits
the search space for key links to links in SPT rootedl &iven that the number of
links in a tree would b&(|V|]), search space is reduced fran|£]|) to O(|V]).

— A packet needs to be forwarded to an unusual next hop only when it arrives back
from a usual next hop. In other words, an edgs included inlC;?_,i onlyifjisa
next hop fromi to d with ¢, andi is a next hop frony to d withoute. This helps
segregate nodes and links based on the next hopsifrbm,lcjﬁ- is 0 if j is not
a usual next hop fromito d. Also, an edge: is not a member oIC}LL- if e is not
in the subtree below of the SPT ofi. Therefore, the key links of all the interfaces
together can be determined withil(|V|) SPT computations.

Notation

y set of all vertices Algorithm 2 : TABLES (i)
& set of all edges 1: forall j € V do
N; set of neighbors of node 2 T7 < ISPF(T;, V, {i—j})
W, weight of edge: 3. for ad" d € Vdo .
IV avg no. of neighbors of a node 4 B = N(d, T,™)
D diameter of the network 5: if not exists’Z’in_” then
ke .

6 T, 7~ < ISPF(T;, V, KL,
RY set of next hops fronito d h ,Cg v i)
F&, setofnexthops froni—itod.| 7 Fii = N(d, T; ™)
BL, setof back hops from-; to d. 8: retum Fj—, Bivy Vj € N;
K%, key links fromj—i to d.
7 shortest path tree rootediat Algorithm 3 : TASPF1(s, f)

Te SPT ofi without edgee
C(k,T) costto nodé: from root of 7
P(k,T) parents of nodé in tree7

1: 7; < ISPF(T;, V, {f})
2: forall j € N; and j € N(j,7;) do

3. 7; < ISPF(T;, V. {f})

N (k,T) next hops tds from root of 7 4 & < EB(SG,T5)

S(k,T) subtree below in tree7 5. forall u—v € & do

V(7) setofallvertices in treg 6: V' <= V(S(v,Th))

E(T) setofall edgesintre@ 7 7,7 = ISPF(7;,V', {u—v})

o) priority queue 8: forall d € V' (jO
o: if i € N(d, 7,"™) then
10: Ké, < Kd,; U{u—}
11:

Algorithm 1 : ASPF(4) 12: return TABLES?)

1: forall j € NV; do

2: forall d € Vdo

. d

j: Kii =0 Algorithm 4 : TASPF2(i, f)

5. 7, <« SPF(i,V, 5) 1 j; = ISPF(Z7V7 {f}))

6: forall j € N and j € N(j, T;) do 2: forall j € Niandj € N(j,7;) do

7. T; < SPF(j,V, 5) 3 73/ ~ ISPF(?}J v, {f})

8 & < E(S(,T)) 4 &< ESU,T))

9: forall u—v € & do 5. forall u—v € &' do

10: V' < V(S@,T)) 6: V< V(S(v,T))
7 it BT or V' Z V(T or f €

1 T = ISPR(T, V', {u)) -
12: forall d € V' do E(T;) then

13: if i € N(d,7;) then 8: T < 1SPF(T;, V', {u—})
14: K < K,y U{u—} o: else
16: return TABLES) 11: forall d € V' do

12: if i € N(d,7;*") then

13: Kd; <= K¢, U{u—}

14:

15: return TABLES?)

— Incremental SPFISPF) procedure can be used for efficiently figuring out the ef-
fect of a link failure.ISPF adjusts an existing shortest path tree instead of con-
structing it from scratch. The complexity of tHePF is proportional to the number
of nodes affected by the link failure which on the average is much smallefithan

The ASPF procedure based on the above observations is shown in Algorithm 1.
It usesISPF procedure (not shown here but can be found in [12]), for incrementally
building a new SPT from an existing SPT. The argumentSERF include the treel”
corresponding to the edge s&tthe setf’ of (failed) edges to be removed and the set
V' of interested destinations. It returns a new tree consisting of nodésmithout the
links in &’. In ASPFprocedure, the sets of key links are first initialized tdines1—3).

Then the shortest path tré&e rooted at; is computed usingPF procedure (line).
Each neighboy that is a next hop to some destination is considered in turn gink
not, the key links for the corresponding interfgee: remain(. Otherwise; is the next
hop to all the nodes in the subtree belpwOnly the linksE(S(j, 7;)) in this subtree
S(j,7;) could be key links for the nodeg(S(j,7;)). So the search for key links is
restricted only ta(S(j, 7;)) (lines8—9). A SPTZ* without each of these edgesv

is incrementally computed usin§PF (line 11) from 7; which was computed earlier
using SPF (line 7). These SPTs are partial trees computed to span only the affected
nodes below:—v in tree7; (lines10—11). Finally, a linku—wv is included mICd for
alldin V(S(v,T;)) if 7 is a next hop tal from j in tree7;"" rooted atj Wlthout edge
u—v (lines12—14).

Once key links are determined, forwarding and backwarding tables are computed
usingTABLESprocedure shown in Algorithm 2. Since we are preparing the forwarding
tables for handling single link failures, the backwarding table for an interface
contains the next hops without only the edgej. These entries are obtained using
ISPF on7; (lines2—4). The forwarding table entry for destlnatlonpf»z interface is

computed by excluding the links in the :ﬁagg AtreeT - corresponding to key link
setIC‘i is computed only if it wasn’t previously computed (lings 6). In particular,
when the key link set is empty, existing tr&g can be reused. Essentially, a shortest
path tree is computed only once for each distinct set of key links.

We now analyze the complexity of tHe&SPFprocedure . There atéd/| + 1 invoca-
tions of SPF(lines5 and7) andO(|V|) of ISPF invocations (linel1). The running time
of an incremental algorithm such EBPF depends on the number of nodes affected (re-
quiring recomputation of paths) by the changes in the edge set. So let us measure the
complexity in terms of the affected nodes. Each linik the tree7; is pulled down in
turn to see its impact on the next hops from a neighpddnly those nodes that are
below the linke are affected by the removal ef A node is affected by the removal
of any of the links along the path to it from the root. The number of link removals
(theISPF computations) affecting a node in the worst case would be the diameter of
the networkD. So the total number of affected nodes duéi@V|) ISPF invocations
would beO(D|V]). Since regulaSPF computation has to start from scratch, we can
say that the affected nodes avé|V|). So the complexity of key link computation is
thenO(D + |N| + 1) times regulaSPF computation. The time taken BYABLESde-
pends on the sets of key links and it is found to be dominated by the time for key link

computation. Therefore, considering tHatcan be approximated Hyg |V| and SPF
takesO(|€|log |V|), the complexity ofASPFis O(|€]log? V).

3.2 Incremental ASPF Algorithms

The ASPFprocedure described above computes forwarding tables efficiently and thus
makes the deployment of FIR feasible. Its running time can be further improved by sav-
ing the intermediate steps of the previous computation of these tables (corresponding
to the previous global update) instead of obtaining them from scratch. We devised two
incremental versionkASPF1 andIASPF2 that take advantage of the saved informa-
tion in determining new key links and tables when an update is received notifying the
failure of a link. These two versions differ in the amount of memory usbePF1
rememberg; rooted at, 7; and7;"” for each neighboy. So the total space required
for IASPF1 is O((2|N|+ 1)[V]). In addition to thisJASPF2 saves partial treeg;" "
for each edge—v in 7;. The additional space required I&¢SPF2 is O(D?|V)|).

The procedurdASPF1 shown in Algorithm 3 is quite similar tASPFwith changes
only in lines5 and7 (renumbered and3 respectively inASPF1). Suppose the failed
link is f. While ASPFusesSPF (line 5), IASPF1 invokesISPF to compute nev;
without link f based on the saved o (line 1). Similarlyf;- is computed for each
using old7Z; (line 3). The backwarding table computation time can also be improved
by using the saveﬂ;i’j. The rest of theASPF1 procedure is no different frolASPFE
With only minor changes, usin@((2|\] + 1)|V|) space]ASPF1 reduces approxi-
mately |[\V'| + 2 SPFcomputations. These procedures are shown only for a link down
event. A link up event can also be treated analogously.

ThelASPF2 procedure shown in Algorithm 4 further improves the running time
by avoiding unnecessary computations of the partial t7ges for each edges— in 7;.
This procedure is similar tASPF1 except for linesr—10. A tree 7, is reused if it
exists and spans all the nodes affected wien is down without including the failed
link f. Otherwise, a new such tree is constructed by invokikPF . Since these trees
are partial trees and a link is not part of many such trees, a large fracti@xGef
invocations can be avoided. In the next section, we show that the average running time
of IASPF2 is less than even a singkPFcomputation. Now let us look at the additional
space required for storing these partial trees. As mentioned earlier, a node is affected
by all the links along its path from the root and their count in the worst case would
be the network diameteP. So a node would be a member of at méspartial trees.
The space needed for a partial tree in the worst case would times the number of
affected nodes in it. So the total space for all the partial trees put together would be less
thanD?|V| which is only linear in terms of the number of nodes in the network.

4 Evaluation of the FIR scheme

We now evaluate the performance of the FIR scheme and demonstrate its failure re-
siliency and forwarding efficiency. We first describe how link failures in random topolo-
gies are modeled. Then, we show how service downtime is reduced substantially by
employing FIR. It is also shown that compared to the optimal shortest path routing

the extent of path elongation due to local rerouting by FIR is not significant. Finally,
the relative computational complexity of ASPF and incremental ASPF algorithms w.r.t.
Dijkstra’s SPF algorithm is presented to affirm that FIR is viable.

45

40
35
30
25
20

il 15 |
0a| 1
10+
02| 1
5|
| 0
o -
3

o o 1 2 4 5 6 7 8 9 10 10+
001 01 1 10 100 1000 . X -
failure duration (minutes) number of simultaneous link failures

cumulative distribution
relative frequency (%)

(a) failure duration (b) simultaneous failures

Fig. 6. Distribution of failures

4.1 Link Failure Model

The pattern of link failures in large operational networks is yet to be characterized very
well. In [7], some detailed measurements and analysis on the link failure events in the
Sprint’s IP backbone network are reported. They presented a histogram of the mean
time between failure of links and the cumulative distribution of failure durations. Their
findings are used in this paper as the basis for inducing failures on random topologies
generated using the BRITE topology generator [9] with link weights chosen randomly
from the rangel00 to 300. We modeled the mean time between failures (MTBF) of
links with a heavy tailed distribution, with the distribution function obtained by curve
fitting on the histogram reported in [7]. The MTBF values generated in this way vary
from several hours to tens of days. Our model of failure events duration was based on
the cumulative distribution reported in [7]. We patrtitioned that distribution function
into several segments and use straight lines to approximate each segment as shown
in Figure 6(a). Histograms on the relative frequency of the number of simultaneous
failures is shown in Figure 6(b) fai) node topology with average degrée

4.2 Service Downtime

We now compare the routing performance with and without employing FIR. The per-
formance is measured in termss#rvice downtimevhich is defined as the total time

any two nodes in the network are unreachable from each other. First consider the per-
formance with FIR. When a router under FIR detects an adjacent link failure, it does

o~ 200 Nodes
— 100 Nodes
0.04H -&- 50 Nodes

60 8 30
suppress interval (seconds) convergence delay (seconds)

(a) with FIR due to multiple failures (b) with and without FIR

Fig. 7. Performance evaluation in terms of service downtime

not propagate the LSP immediately. Insteaduppressethe global update and initi-
ates local rerouting. There would not be any delay between failure detection and local
rerouting if backwarding tables are employed in the forwarding plane. However, local
rerouting by different nodes due to multiple suppressed failures can result in a forward-
ing loop contributing to service downtime. For example, suppose the finksand

4—6 of the topology in Figure 1 are down. Then packets frbro 6 take the path
1-2—-1—4 -1 —2—1---, thus keep looping even thoughis reachable through
1—3—5—6. Nevertheless, since failures are suppressed only for a ceupjoress
interval, it is less likely that multiple links fail simultaneously within a short duration.
Moreover, only a specific scenario of failures of links along the shortest path and the
alternate path can cause looping.

To demonstrate the ability of FIR in handling simultaneous failures, the downtime
with FIR is plotted as a function of the suppress interval in Figure 7(a). The results are
shown for network topologies of different siz&0(100, and200 nodes) and average
degree oft. Every point in the plot is the average ®§imulation runs, with the vertical
bars reporting5% confidence intervals. When the suppress intervébiseconds, the
fraction of the time some destination is unreachable due to loop-causing simultaneous
multiple suppressed failures is less thaf2%. Even when the suppress interval is
made2 minutes to further reduce the global link state update overhead, all nodes are
reachable99.95% of the time. These results suggest that by preparing for single link
failures, FIR can also handle most of the simultaneous link failures.

The discussion above assumed that local rerouting does not incur any delay. But
when the backwarding tables are not employed in the forwarding plane there would be
some delay in locally sensing the failure, recomputing the forwarding tables and up-
dating FIBs. The time to detect a link failure would be much shorter with local rerout-
ing than with global rerouting. For example, a link can be considered failed and local
rerouting is triggered with the loss of single hello packet, while the failure event is no-
tified globally only after the loss df hello packets. Essentially, local rerouting enables

swift response to failures without causing routing instability. Using the backwarding
tables stored in the control plane, the forwarding tables can be recomputed in negligi-
ble amount of time. Then, the time to update FIBs depends on the number of entries
changed. Assuming that the total local rerouting dele&d/sgconds, the service down-
time with FIR is contrasted with downtime without FIR in Figure 7(b).

Let us look at the downtime without FIR. Suppose a link fails at tiraad after a
periodT all routers reconverge and forwarding to the affected destinations is resumed.
We refer to this timel’ as the convergence delay which is the sum of all the delays
due to several contributing factors suchlgig-generatiorinterval, andspf-intervalas
explained in [7]. During this period certain node pairs that have shortest paths through
the failed link are not reachable. Figure 7(b) shows the service downtime without FIR
as a function of the convergence delay. It also shows the downtime with FIR assuming
local rerouting delay of seconds and suppress intervallahinute. It is clear that by
employing FIR, service downtime can be improved by at least an order of magnitude.
In addition, by suppressing the update of failures that last less than a minute, majority
of the failures are handled without global updating and recomputation. These results
indicate that FIR not only increases failure resiliency but also ensures routing stability
while reducing update overhead.

4.3 Path Length Stretch

Under FIR, only the node adjacent to a failed link is aware of the failure and all other
nodes are not. So, a packet takes the usual shortest path till the point of failure and then
gets rerouted along the alternate path. Consequently, in the presence of link failures, FIR
may forward packets along longer paths compared to the globally recomputed optimal
paths based on the link state updates. For example in the topology of Figure 1, when
the link 2—5 is down, packets front to 6 are forwarded along the path-2—1—4 —6.

Had nodel been made aware of the link failure, packets would be forwarded along the
shorter pathl —3— 5 — 6. However, we found that on realistic large topologies the
extent of this elongation is not significant. Lsttetchof a path between a pair of nodes

be the ratio of the lengths of the path under FIR and the optimal shortest path. When
the weights of all the links are not same, path length is said to be the sum of the weights
of its links. Without any link failures, there is no difference between the FIR paths and
the optimal shortest paths. So the stretch. ig/e have measured the stretch under link
failures due to FIR for random topologies of various sizes. Across all topologies the
average stretch is less thar2 and in most cases it is close 1o

4.4 Forwarding Table Computation Complexity

As explained before, the main change required in the control plane for the deployment
of FIR is the replacement of traditional interface independent routing table computation
algorithm with an algorithm for computing interface dependent forwarding tables. This

algorithm is invoked only when a link failure lasts longer than a suppress interval and
a global update is triggered. This computation is done while packets to the affected
destinations are locally rerouted. Therefore, unlike in the existing routing schemes, the
running time of the FIR algorithms does not affect the reachability of destinations.

Nevertheless, it is desirable to reduce the computational overhead on a router. Here we
evaluate the running time of the FIR algorithms and show that the forwarding tables can
be incrementally computed in less than a SPF computation time.

ASPF —B— ASPF —B—

1+ 4 13
ASPF v2 © ASPF V2 O
ut
ol 1

relative performance
relative performance

O

. . . , , , ¢ @ @ d 2 hd ©

% 50 75 10 15 1m0 15 200 % 50 75 10 15 1m0 15 200
number of nodes number of nodes

(a) average degree df (b) average degree 6f

Fig. 8. Comparison of run time complexity of FIR algorithms

We measured the time complexity of all theSBF based algorithms in terms of
the number of distance comparisons made as was done in [10]. The distances of two
nodes are compared for updating distance of one of them or for readjusting the prior-
ity queue after aextract or enque operation. The running time g&SPFand its
incremental versionlASPF1 andIASPF2 are shown in Figure 8. We show the rela-
tive performance of these algorithms w.r.t. well known Dijkst@RF algorithm. Since
Dijkstra’s algorithm is widely deployed, using it as a reference helps in assessing the
running time of these algorithms. The memoryl@SPF procedure takes arourid)
times longer thatsPF for computing forwarding tables from scratch. The incremental
procedurdASPF1 rememberg|N| + 1 shortest path trees and improves the running
time to less thas timesSPF. Using an additional space of less thBd|V|, IASPF2
takes no more than a singd”Fcomputation. Its relative performance gets better as the
connectedness increases. Apart from the modest space requireh&#E2 does not
add any additional processing burden on routers that currently employ DijkStP&'s
algorithm for computing routes.

These results establish that FIR is feasible, reliable, and stable. Furthermore, it re-
quires minimal changes in control plane only and also reduces communication over-
head. These features make FIR an attractive alternative to the existing routing schemes.

5 Related Work

The nature of link failures in a network and their impact on the traffic has received a
great deal of attention recently. The frequency and the duration of link failures in a back-
bone network has been studied and reported in [5, 7]. They observe that link failures are

part of everyday operation of a network due to various causes such as maintenance,
accidental fiber cuts, and misconfigurations. It is also found that the majority of the
failures are transient lasting less than a minute warranting local rerouting. The impact
of link failures on Voice-over-IP is assessed in [4]. They noticed that link failures may
be followed by routing instabilities that last for tens of minutes resulting in the loss of
reachability of large sets of end hosts. Since the level of congestion in a backbone is
almost negligible, offering high availability of service is identified as the major con-
cern for VoIP. These findings about the link failures and their debilitating effect on the
network services provide a strong motivation for schemes such as FIR that focus on
ensuring service continuity.

There have been several proposals for mitigating the impact of link failures on net-
work performance. [6] and [13] address the issue of assigning weights to links such that
the traffic is balanced across the network even in the presence of link failures. These
schemes can be thought of as preparing for link failures in terms of reducing overload
while FIR is concerned with increasing availability. As mentioned earlier, guarantee-
ing reachability is found to be an overriding concern than avoiding congestion in a
backbone network. Moreover, these schemes can be used in conjunction with FIR. A
detailed analysis of the sources of delay in routing reconvergence after a link failure is
provided in [1,2]. They suggest tuning various parameters related to link state propa-
gation and routing table computation for accelerating the convergence and reducing the
downtime. This may not be the best recipe for handling common transient link failures.
The objective of FIR is to make forwarding insensitive to the parameter values chosen
for accelerating convergence and insuring stability.

A recent work closely related to FIR is the deflection routing proposed in [8]. The
basic idea underlying their approach is to select a next hop node based on strictly de-
creasing cost criterion. While deflection routing guarantees loop-free paths, it may not
always find such a path even if one exists. For example, in a simple triangle topology
when a link with the smallest cost goes down, the corresponding pair of nodes are not
reachable. Apart from this last hop problem, deflecting routing requires that the weights
of links satisfy a certain condition. FIR imposes no such restrictions on weight assign-
ment and assures loop-free forwarding to any reachable destinations in case of single
link failures. An algorithm proposed in [11] performs local restoration by informing
only the routers in the neighborhood about link failure events instead of all routers. FIR
achieves similar effect without requiring any changes to link state propagation mecha-
nism. An application layer solution is proposed in [3] for detecting and recovering from
path outages using a resilient overlay network. While RON is an attempt to overcome
the slow convergence of BGP based inter-domain routing, FIR is a remedy for outages
in intra-domain routing. Nevertheless, we believe network layer schemes such as FIR
obviate the need for application layer approaches like RON.

6 Conclusions and Future Work

In this paper, we addressed the problem of ensuring destination reachability in the pres-
ence of link failures. We proposedailure insensitive routingpproach where routers
infer link failures from the packet’s flight and precompute interface specific forward-

ing tables avoiding the potentially failed links. When a link fails, only adjacent nodes
locally reroute packets while all other nodes simply forward them according to their
precomputed interface specific forwarding tables without being explicitly aware of the
failure. We presented aavailable shortest path firstlgorithm that computes interface
specific forwarding tables for dealing with single link failuresi|&| log® [V]) time.

We have also described an increme®&PFalgorithm that require®(D?|V|) space

for remembering intermediate steps of the previous computation but runs in less time
than aSPFcomputation. We have demonstrated that FIR handles simultaneous multiple
failures also and reduces service downtime by an order of magnitude. Essentially FIR
approach improves failure resiliency without jeopardizing routing stability. It does so
without altering the forwarding plane while reducing communication overhead. Hence,
we believe that FIR is an attractive alternative to the existing routing schemes. We are
currently in the process of conducting packet level simulations to assess the utility of
FIR in terms of throughput received by TCP flows and quality experienced by VoIP
flows. Also, we plan to actually implement FIR and evaluate its performance to make
its case more compelling.

References

[EnY

. C. Alattinoglu, V. Jacobson, and H. Yu, “Towards Milli-Second IGP Convergence,” draft-

alaettinoglu-1S1S-convergence-00.txt, November 2000.

2. C. Alattinoglu, and S. Casner, “ISIS routing on the Qwest backbone: A recipe for subsecond
ISIS convergence,” NANOG 24, 2/2002.

3. D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient Overlay Networks,”
SOSP, 2001.

4. C.Boutremans, G. lannaccone, and C. Diot, “Impact of Link Failures on VoIP Performance,”
NOSSDAYV, 2002.

5. C.-N. Chuah, S. Bhattacharyya, G. lannaccone, C. Diot, “Studying failuréir impact
on traffic within a tier-1 IP backbone”, CCW, 2002.

6. B. Fortz, “Optimizing OSPF/IS-IS weights in a changing world”, IEEE JSAC Special Issue
on Advances in Fundamentals of Network Management, Spring 2002.

7. G.lannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, C. Diot, “Analysis of link failures
in an IP backbone”, IMW 2002.

8. S.lyer, S. Bhattacharyya, N. Taft, N. McKeown, and C. Diot, “An approach to alleviate link
overload as observed on an IP backbone,” INFOCOM, 2003.

9. A.Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal Topology
Generation”, Proceedings of MASCOTS 2001, Cincinnati, August 2001.

10. P. Narvaez, “Routing reconfiguration in IP networks”, Ph.D. Dissertation, MIT, June 2000.

11. P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local Restoration Algorithms for Link-State Rout-
ing Protocols”, ICCCN, 1999.

12. S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure Insensitive Routing for Ensuring
Service Availability,” Technical Report, University of South Carolina, Columbia, February
2003.

13. A. Nucci, B. Schroeder, S. Bhattachrayya, N. Taft, C. Diot, “IS-IS link weight assignment

for transient link failures,” SPRINT ATL Technical Report TRO2-ATL-071000.

