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Abstract— Static broadband wireless networks, due to their
ease of deployment, are likely to proliferate in the near future.
The major stumbling block, however, is that wireless links are
prone to external interference, channel fading, inclement weather,
etc. Therefore scalable and reliable routing despite frequent link
quality fluctuations is needed for accelerating the growth of these
networks. Most of the wireless routing schemes proposed in
the literature are less suitable for these networks, as they are
designed primarily for mobile ad hoc networks with dynamic
and unpredictable topologies. In this paper, we propose a novel
link-state-based blacklist-aided forwarding (BAF) approach, that
takes advantage of the fact that the nodes and therefore their
adjacencies are relatively static, for scalable packet delivery
in static wireless networks. Under BAF, each packet carries a
blacklist, a minimal set of degraded-quality links encountered
along its path, and the next hop is determined based on both
its destination and blacklist. BAF provides loop-free delivery of
packets to reachable destinations regardless of the number of
degraded links in the network. We evaluate the performance of
BAF and show that it is not only reliable but also scalable.

I. INTRODUCTION

There is a general trend towards wireless connectivity to
eliminate the costs and delays associated with building and
maintaining a wired infrastructure. Static multihop wireless
networks are emerging as the technology of choice for con-
necting the communities and for providing broadband ac-
cess to the Internet [1]-[3]. In such static multihop wireless
networks, routers (“nodes”) are connected through wireless
channels (“links”) instead of wired links, and are responsible
for forwarding packets from/to various wireless end systems
such as laptops, PDASs, etc. For these wireless networks to be
a viable alternative, they should offer similar level of service
availability and reliability as wired networks. Unfortunately,
apart from the component failures that are common in wired
networks, wireless links have additional sources of degradation
such as external interference, channel fading, and inclement
weather. Therefore, reliable and scalable routing despite such
fluctuations is essential for overcoming a potential hurdle to
widespread deployment of static wireless networks.

A key characteristic of the aforementioned networks is that
the nodes and their adjacencies (potential neighbors) are rela-
tively static, whereas the state of links can be quite dynamic.
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In other words, the state of a link may vary frequently between
good channel conditions and noisy channel conditions, while
the set of potential neighbors of a node changes rarely. Most of
the wireless routing schemes [4]-[6] proposed in the literature
have been designed primarily for mobile ad hoc networks with
dynamic and unpredictable topologies, and thus are not ideally
suited for static networks. These schemes in general assume
that individual wireless devices are responsible for discovering
and maintaining routes to other peer devices, hence energy
and mobility are major concerns. Though some schemes [7],
[8] have been proposed recently for wireless mesh networks,
their route discovery and packet forwarding mechanisms are
similar to mobile ad hoc routing schemes. We believe schemes
based on traditional link state routing are better suited for
static multihop wireless networks provided they do not incur
the expense of frequent link state updates.

In this paper, we propose and develop a novel link-state
based routing approach — blacklist-aided forwarding (BAF) —
for scalable packet delivery in static multihop mesh networks.
The proposed approach aims to balance the trade-offs in
reliability (high packet delivery rate), optimality (routing along
the best quality paths) and scalability (routing overheads)
by taking advantage of the unique characteristics of static
multihop mesh networks. The central idea behind the BAF
approach is to let link state packets disseminate a reference
topology reflecting the adjacencies of nodes and their long-
term qualities to the entire network, while regular data packets
convey negative! information on links with degraded short-
term quality (w.r.t. the reference topology) to the nodes in a
neighborhood. Under BAF, each packet carries a blacklist?, a
set of currently degraded links, and it is forwarded along a
route based on both the destination and blacklist information.
A packet’s blacklist is normally empty and the next hop is
chosen along a path with decreasing cost (according to the
reference topology) to the destination. But when such greedy
forwarding is not possible at a node due to the degradation of
an adjacent link, that link is added to the packet’s blacklist and
forwarded to an alternate next hop. The blacklist of a packet
is reset to empty when the next hop has lower cost to the
destination than any of the nodes visited so far by the packet.

11f a link’s short-term quality is better than its long-term quality, forwarding
over it is loop-free even without informing any other node of its current state.

2The notion of blacklist here is different from that in [9], [10]. We use
blacklist as a way of propagating link state locally and packets may be
forwarded over a blacklisted link as explained in Section VI.



The proposed blacklist-aided forwarding approach has sev-
eral attractive features: (i) it guarantees loop-free delivery to
reachable destinations regardless of the number of degraded
links; (ii) when there are no degraded links, BAF behaves just
like conventional shortest path forwarding; (iii) only the nodes
in the vicinity of a degraded link need to be informed of the
link being blacklisted, resulting in localized link state updates;
(iv) BAF amounts to on-demand creation of a few alternate
routing entries at nodes around vulnerable links, making it a
scalable scheme for reliable delivery.

The remainder of the paper is organized as follows. We
describe the problem setting in Section Il and propose our
solution, BAF, in Section 111. We present the formal algorithms
and implementation details of BAF approach in Section IV.
The performance of the proposed approach is evaluated in
Section V. In Section VI, the proposed approach is extended
to handle more fine-grain link state changes than just good and
bad. The related work is discussed in Section VII. Finally, we
conclude the paper in Section VIII.

Il. PROBLEM SETTING

The problem scenario addressed in this paper can be de-
scribed as follows. Consider a multihop wireless network
where nodes (wireless routers) are deployed in fixed locations
and they are responsible for routing and forwarding packets
from/to wireless end systems within their radio range to
other wireless end systems in the network (or gateways to
the wired Internet). In such networks, the adjacencies of a
node (the set of neighbors that could be next hops from this
node to some destination) are relatively static, since nodes do
not “join” or “leave” the network dynamically. On the other
hand, the state of the wireless channel or link between two
neighboring nodes may oscillate frequently, due to various
causes. For simplicity, first we represent link state as either
good or disrupted. A link is considered to be good if packets
can be forwarded successfully over that link; otherwise it is
regarded as disrupted. We motivate and develop the proposed
approach based on this two-state model and later extend it in
Section VI to handle fine-grain degradation in the quality of
links . Aside from the instant state of good or disrupted, a cost
(e.g. ETX [11] or ETT [8]) is associated with each link that
represents its long-term throughput or channel capacity. The
state (good or disrupted) of a link may fluctuate frequently,
whereas its cost varies much slowly. For example, in the
topology shown in Fig. 1 where each edge is labeled with
its cost and disrupted links are indicated by dashed edges,
the link A—C has a cost of 1 but it is currently disrupted.
Given this scenario, our goal is to design a scalable scheme
that always attempts to forward packets along low cost links,
while routing around those that are currently disrupted, so as
to attain high packet delivery rate and throughput.

Although traditional link state routing schemes can be ap-
plied to such static multihop networks, they suffer the problem
of poor scalability, while without necessarily ensuring high
packet delivery rate: any discrepancy between the previously
updated state and the current state of the network could cause

Fig. 1.

Topology used for illustration

packet drops or forwarding loops. For example, in the topology
of Fig. 1, suppose all the nodes know the cost of each link
but only the nodes adjacent to a disrupted link are aware of
its current state and other nodes are not informed. Assume A
is the source and C is the destination for a packet. Knowing
that the link to its next hop C is currently disrupted, A can
either drop the packet or forward it along the alternate shortest
path via D. If A forwards to D, since D is not aware of
the disruption of A—C, it will forward back to A, along its
usual shortest path for C, resulting in a loop. This is certainly
undesirable particularly when all the nodes are reachable from
each other without disrupted links. On the other hand, always
maintaining accurate view of the network, to avoid looping or
dropping of packets, is either expensive or infeasible when
the timescale at which link state varies is relatively small
compared to the time required for global dissemination of link
state updates and route recomputations.

Several approaches for reducing the overhead of link state
routing have been suggested for both ad hoc and wired
networks [12]-[16]. Fisheye State Routing (FSR) [12] and
Hazy Sighted Link State (HSLS) routing are such ad hoc
routing schemes that update the nearby nodes at a higher
frequency than the remote nodes. An algorithm proposed
in [13] performs local restoration by informing only the routers
in the neighborhood about link failure events instead of all
routers. Failure insensitive routing approach [15] provides
local rerouting for IP networks through interface-specific for-
warding and failure inferencing. All these approaches may
work fine for individual and independent link disruptions
but cannot handle simultaneous disruptions of multiple links
which is quite likely in wireless networks. Therefore, a new
routing scheme is needed that ensures loop-free delivery to any
reachable destination regardless of the number of disrupted
links without requiring accurate state of the network. In this
paper, we propose and evaluate such a scheme that is ideally
suited for static multihop wireless networks.

I11. OUR APPROACH

In this section, we start with how greedy forwarding can
be performed to locally route around disrupted links. We
then present our blacklist-aided forwarding approach that
overcomes the limitations of greedy forwarding and provides
reliable delivery despite transient disruptions without frequent
global link state updates.



A. Greedy Forwarding

Consider the topology shown in Fig. 1 and suppose that all
the nodes know the cost of each link through global updates,
but only the nodes adjacent to a disrupted link are aware of its
current state. Now assume that A is the source and H is the
destination for a packet. The usual shortest path from A to H
is via C. But since A—C link is currently disrupted, we need to
find an alternate next hop. We want to choose a next hop such
that the packet does not get caught in a forwarding loop. One
way to guarantee loop-freedom is to forward the packet along
the path with decreasing cost to the destination, i.e., at each
hop ensure forward progress towards the destination. Only the
neighbors of a node with forward progress to the destination
are considered feasible nexthops. The process of forwarding a
packet to a feasible nexthop with maximum forward progress
is referred to as greedy forwarding. It is important to note
that for greedy forwarding to be loop-free, costs of shortest
paths need to be determined consistently at all nodes based
only on the global link state updates, disregarding any local
knowledge of disruptions.

For example, in the topology of Fig. 1, the cost to reach H
from A, B, D are 5, 6, and 4 respectively. To reach H from A,
node B is not a feasible next hop since its cost to H is 6 which
is greater than the cost from A to H. The other neighbor of A,
node D is a feasible next hop since its cost to H is 4 which
is less than 5. So A forwards the packet to D which in turn
forwards to G. Again at G, the adjacent link G—H associated
with the usual next hop is disrupted. So G looks for a feasible
next hop and finds that F is feasible with its cost to H being 1
which is less than G to H cost of 2. This way, a packet from
A is delivered to H successfully with greedy forwarding even
though some links along the path are currently disrupted and
all nodes do not have the accurate view of the network.

The greedy forwarding described above does not guarantee
delivery of a packet to its destination even if there exists a path.
A packet is discarded when forward progress is not possible,
i.e., it reaches a deadend node whose cost to the destination
is smaller than any of the possible next hops. For example, in
Fig. 1, suppose the source of a packet is A and its destination is
C. Given that A—C is currently disrupted, A drops the packet
since it cannot find a next hop to C with cost smaller than 1.
Note that a packet encounters deadend only when there is an
unannounced disrupted link adjacent to the deadend node. If
all other nodes are made aware of that disrupted link, there
would be forward progress and this node would not be a
deadend. For example, if every node is aware that A—C is
down, D becomes a feasible next hop for A to reach C. But
triggering a global update upon every link state change causes
significant overhead due to network-wide flooding of link state
packets. It would be ideal to inform only those nodes in the
neighborhood of the disrupted link that would be affected by
the disruption. But it is not easy to determine the right scope
for an update in the presence of multiple simultaneous or
overlapping disruptions in the network. An alternate approach
is to include such disrupted links that cause a deadend in the

packet itself so that the nodes along the packet’s flight utilize
this information in forwarding the packet. That is precisely
what is done under blacklist aided forwarding.

B. Blacklist Aided Forwarding

Under blacklist aided forwarding (BAF), a packet can be
thought of as being forwarded in two modes: greedy and
recovery. A packet is normally forwarded in greedy mode to a
next hop along the path with decreasing cost to the destination.
When there is no discrepancy between the previously updated
state and the current state of the network, greedy forwarding
alone ensures delivery. However, in the presence of disrupted
links a packet may arrive at a deadend node. When a packet
hits a deadend in greedy mode, instead of discarding the
packet, it is forwarded in recovery mode. In recovery mode,
packets carry a blacklist, a set of disrupted links encountered
along the path. A node while forwarding a packet chooses a
next hop along a route that does not include blacklisted links.
The forwarding of a packet is switched back to greedy mode
when it arrives at a node with lower cost to the destination than
the node at which it entered recovery mode. This approach
guarantees loop-free reliable delivery even in the presence of
many disrupted links.

BAF requires that each packet carries an additional field
blist, the set of blacklisted links, apart from the dest field
for the purpose of forwarding. There is actually no explicit
forwarding mode. Instead, the next hop is determined based
on both dest and blist fields of the packet. For ease of under-
standing, however, we can imagine that packet is forwarded
in greedy mode when its blist is ¢ and in recovery mode
otherwise. Apart from the dest and blist fields, for convenience
of explanation (though not necessary for forwarding as we will
see in the next section), let each packet p have another field
cost to keep track of the smallest cost to p.dest seen so far by
p. This p.cost would be the same as the cost to p.dest from the
last deadend node if the packet is in recovery mode. Otherwise
it would be the same as the cost to the destination from the
currently forwarding node.

Consider again the example scenario of Fig. 1, where a
packet p is being forwarded from its source A to destination
C. We have seen that under greedy forwarding, A would not
be able to find a feasible next hop and therefore drops the
packet. With blacklist-aided forwarding, instead of dropping
the packet, A includes the link A—C in the packet’s blacklist
since the usual nexthop to reach C is C itself, sets p.cost
to 1 and forwards it to alternate next hop D. The node D
would compute the next hop without the blacklisted link A—C
and finds that the next hop is C itself. Since the cost to
the destination C from the next hop C is 0 and therefore
smaller than the current p.cost of 1, the p.blist is reset to )
and p.cost is set to 0. The packet thus arrives at C along
the alternate path A—D—C. The contents of the p.blist field
while p is traversing the links A—D and D—C are A—C and
(0 respectively. The corresponding values of the p.cost field are
1 and 0. This example, though quite trivial, demonstrates how
a packet is forwarded reliably with the aid of a blacklist.



Now consider another scenario where B is the source and
E is the destination for a packet p. Since B—E is currently
disrupted, B would forward p to A. It will set p.cost to 3 and
include B—E in p.blist since the cost from A to E is not less
than 3. Then, A adds A—C to p.blist and forwards to D. The
node D determines C as the next hop based on p.blist. Before
forwarding, it resets p.blist to §} since the cost of 2 from C to E
is less than p.cost which is 3. Thus, the path taken by p would
be B—-A—D—C—E. The corresponding values of p.cost at
each of these hops would be 3, 3, 2, and 0 respectively.
Similarly, p.blist would be {B—E}, {A—CB—E}, § and
(0 respectively. Thus the blacklist of a packet grows when
necessary, and shrinks if possible during the flight to its
destination so as to ensure loop-free delivery.

These examples demonstrate the reliability and scalability
of BAF. It is easy to see that BAF delivers a packet to
its destination if there exists a path without disrupted links.
Moreover, under BAF, only a few nodes in the vicinity of a
disrupted link need to be notified of the link being blacklisted,
amounting to localized link state updates. In our example
topology, packet to any destination is delivered by BAF
without nodes G, F and H being informed of the disruption
of A—C or B—E, and likewise nodes A, B, C, D and E of the
disruption of G—H. Such an on-demand propagation of state
makes BAF a scalable scheme for reliable delivery.

IV. ALGORITHMS AND IMPLEMENTATION

In this section, we first provide a formal description of the
greedy forwarding algorithm and then build upon it to develop
BAF algorithm. We prove that BAF guarantees loop-free
delivery to any reachable destination regardless of the extent
of disruptions. We also show that blacklist-aided forwarding
can be performed by a simple table lookup based on both
destination and blacklist fields of a packet. Finally, we extend
blacklist-aided forwarding to include learning which offers a
trade-off between continual exploration of shortest paths and
early avoidance of disrupted links.

Before we present formal procedures, we introduce some
notation used in this paper and listed in Table I. We denote
by &£, the set of all edges in the network and by é;;, the cost
of an edge i—j according to the most recent global update.
It is assumed that the set of all edges £ and their costs ¢ do
not change often and any changes are updated globally. All
edges in &£ are considered to be in good state by default. Due
to causes such as interference, an edge may temporarily be
in the disrupted state. Among the set of all edges &£, the set
of edges that are adjacent (local) to ¢ and currently in the
disrupted state are denoted by B!. Similarly the set of edges
that are non-adjacent (remote) to 4 and learned by i to be in
the disrupted state are denoted by B}. We use P;..q(E) to
refer to the shortest path from ¢ to d with edges in £ and the
corresponding cost is denoted by C;.4(E).

A. Greedy Forwarding

The procedure GF for selecting a next hop along the shortest
path with forward progress from node ¢ to destination d given

TABLE |

NOTATION
y set of all nodes as per last global update
£ set of all edges as per last global update
Ciyj cost of edge i— 75 as per last global update
B~§ set of disrupted adjacent edges known to i
BNZT set of disrupted non-adjacent edges known to i
Pi~d(E)  shortest path from 4 to d w.r.t. edge set £
Ci»a(€)  cost of the shortest path from 4 to d w.r.t. £
p.dest destination address in packet p
p.cost smallest cost to p.dest seen so far by p
p.blist set of blacklisted edges in p

the set of all edges £ and the set disrupted edges B is shown
in Alg 1. A neighbor j is considered a feasible next hop with
forward progress if the cost of the shortest path from j to d
is smaller than that from ¢ to d (line 4). GF returns () when
there is no such feasible next hop. If more than one feasible
candidate exist, it picks the neighbor j* via which ¢ has the
shortest path to d (lines 5-8). We need to point out that GF is
a variant of classic greedy forwarding as it does not always
choose a next hop with maximum forward progress. Instead,
GF chooses a next hop such that it amounts to shortest path
forwarding when there are no disrupted edges. Under greedy
forwarding, a node ¢ forwards a packet p to next hop &, where
k = GF(i,p.dest,&, BL). Here it is assumed that node i is
aware of only its adjacent disrupted edges B~§. When there is
no feasible next hop, i.e., if k£ = (), the packet is discarded. It
is easy to show that since the forward progress is consistently
ascertained w.r.t. the same set of edges &, forwarding using
GF is loop-free [17].

Alg 1 : Greedy Forwarding : GF(i,d, £, B)
15 <0
2. h* < o0
3: for all j € neighbors(z, £ \ B) do
4 if Cja(€) < Cinna(€) then
5 h <= Civy +Cj,\,,d(5)
6 if h < h* then
7 =g
8
9:

: h* <h
return j*

B. Blacklist Aided Forwarding

Under BAF, the blist field of a packet is initialized to §
at the source and it is updated along the path. The formal
description of the BAF procedure for forwarding a packet p by
node i is shown in Alg 2. Under BAF, we first look for a next
hop with the smallest path cost and forward progress without
the edges in the packet’s blacklist (line 1). If no such next
hop is found, at least one adjacent link of node ¢+ must be in
disrupted state. Hence we need to update the packet’s blacklist
by adding the disrupted link(s) to the blacklist. The disrupted
links adjacent to ¢ that need to be blacklisted are identified as
follows. First, we find the neighbor with the smallest path cost



using only the edges in g’\ p.blist (line 3). If the link to that
neighbor is currently disrupted, then it is added to the blacklist
(line 4-5). This process is repeated until either i) we find a
next hop, the link from node 4 to which is not disrupted, or ii)
there is no such next hop (lines 4-6). In the latter case (j =
(), the destination is unreachable and the packet is dropped.
Otherwise, it is forwarded to 7. Before forwarding, if the next
hop j has smaller cost to the destination than any node visited
so far by p, its blacklist p.blist is reset to () (lines 8-10). Thus,
only during the recovery till forward progress can be made, a
packet is forwarded with the aid of a non-empty blacklist.

Alg 2 : Blacklist Aided Forwarding : BAF(i, p)

1: j < GF(i,p.dest, € \ p.blist, BY)
2: if j =0 then
j < GF(i, p.dest, E\pbllst 0)
while j # 0 & i—j € B do
p.blist < p.blistU {i—j}
j < GF(7, p.dest, £ \ p.blist, 0)
if j #0 then _
if Cjnup.dest(E) < p.cost then
o phlited
10: p-cost <= Cj~.a(€)
11: return j

NS AR !

The rules for updating the blacklist of a packet p, p.blist,
at node 4 can be summarized as follows:

o link i—j is added to p.blist if

— 4—j is currently in disrupted state (i—j € gﬁ)
- had i—j been good, j would be the next hop (j €
GF(i, p.dest, £ \ p.blist, 0)
- no feasible next hop exists without
(GF(i, p.dest, £ \ p.blist, {i—j}) = 0)
« p.blist is reset to @ if
— there exists a feasible next hop j
(j € GF(i, p.dest, € \ p.blist, B;))
— cost to p.dest from j is smaller than any other node
p visited 50 far (Cjmp.dest (£) < p.coSt)
In other words, blacklist-aided recovery is ended and greedy
forwarding is resumed as soon as the packet arrives at a node
with forward progress. Such a revision of a packet’s blacklist
makes it carry the minimal set of disrupted links to ensure that
its forwarding is loop-free. A formal proof of loop-freedom
can be found in [18].

The description of blacklist-aided forwarding so far focused
on its functionality in terms of how a next hop is selected
for a packet based on its blacklist and how the blacklist is
updated along the path to destination. Consider the operations
performed by a node 7 under BAF while forwarding a packet
p. It has to select a next hop j after excluding the links in
p.blist and also update the p.blist. The p.blist may remain
unchanged or get reset to ¢ or grow with the addition of
adjacent links of ¢ that are currently disrupted. In all these
cases, the forwarding operation amounts to mapping p.dest
and p.blist to a next hop j and new p.blist based on the
current local state at 4, Bl and the last updated global state

1—]

£. Note that (p.dest,p.blist) uniquely determines p.cost, i.e.,
p-cost = min{Cyrsp.dest (€) | Yu—v € p.blist}. So, there is no
need for an explicit cost field in the packet. This mapping from
(p.dest,p.blist) to (j,p.blist) can be computed on-demand and
remembered when node ¢ first encounters this (p.dest,p.blist)
pair. Once the mapping is done, thereafter any packet with
that (p.dest,p.blist) combination can be forwarded simply by
a table look up. This mapping has to be recomputed only when
B! changes which is local and when &€ changes which is rare.

C. Blacklist Aided Forwarding with Learning

Under the BAF scheme described above, blacklist informa-
tion carried in a packet is used to forward that packet only
and does not influence the forwarding of any other packet.
Each packet gets forwarded along the usual shortest path till
it encounters a disrupted link and gets rerouted. While this
approach delivers packets along the shortest paths when avail-
able, it could make packets traverse longer paths. For example,
in Fig. 1 suppose A is the source and E is the destination for
a packet. Since A—C and B—E are currently disrupted, the
path taken by that packet would bhe A-B—+A—D—C—E.
The corresponding values of blist field at each of these hops
would be {A—C}, {A—C,B—E}, {A—C,B—E}, § and
respectively. As long as links A—C and B—E are disrupted,
according to BAF procedure, every packet from A to E
follows the same path A-B—A—D—C—E. Instead, a node
can learn from the blacklists of packets arriving at it and
utilize this knowledge about non-adjacent disrupted links in
forwarding other packets. In this example, once A learns
about B—E being disrupted from a packet’s blacklist, then
onwards packets to E can be forwarded along a shorter path
A—D—C—E. We refer to this approach as blacklist-aided
forwarding with learning (BAFL).

Alg 3 : Blacklist Aided Forwarding with Learning: BAFL(4, p)

1: while (Pjmyp. dest(é’ \ p.blist) A (Bl u B’)) # 0 do

2 pblist < pblistU (P p.aest (€ \ pblist) A (B U B))
3 j <= next(Pip.dest (€ \ p.blist))

4: if 5 # 0 then

5. if p.blist ! = @ then _

6 k <« lastdeadend(p.dest, p.blist, £)

7: if ij\»p.dest(g) < CkMp.dest(g) then
8

9

p.blist < 0
: return j

A node under the BAFL scheme learns about non-adjacent
disrupted links from the blacklists of packets arriving at that
node. Let B} be the set of remote edges that i learnt to be
disrupted. BAFL uses this information in addition to its local
knowledge of adjacent disrupted links B! while determining
the next hop and new blacklist of a packet. The formal
description of BAFL procedure is given in Alg 3. It first
computes the shortest path to p.dest and checks if any of the
edges along the shortest path are blacklisted, i.e., in B’ U B"
If so, those edges are added to p.blist. This process is repeated
till a path without any blacklisted edges is found or no such



TABLE Il
PARAMETERS OF BAFL SCHEME

limit on the size of a blacklist

max transmission tries before rerouting
refresh interval for adjacent links

™ refresh interval for non-adjacent links

8RS

path exists (lines 1-2). Here we abuse the notation and use
Pi~>q to refer to both the sequence and the set of edges along
the shortest path. Once the next hop is found, the shortest
path cost to p.dest from the last deadend node (which can be
uniquely determined based on the p.blist) is compared with
that from the next hop. If the latter is smaller, then the packet’s
blacklist is reset (lines 6-8). Thus, BAFL ensures that blacklist
information carried in a packet remains the same as before
under BAF. For example, values of blist field at each of the
hops of the path A—D—C—E would be {A—C,B—E}, ) and
(0 respectively. Essentially, under the same set of disruptions,
both BAF and BAFL provide loop-free delivery while BAFL
routes around disrupted links sooner than BAF.

Alg 4 : Processing of a packet under BAFL: recv(i, p)
. if p.dest = ¢ then

: _toupper (i, p)

: B = B} Up.blist

1
2
3
4: j < BAFL(4, p)
5
6
7
8

: while j # @ and |p.blist] < n and failed(send(j, p,v)) do
t Bi=B;U{ivj}

: j < BAFL(i,p)

. drop(p)

The actions taken by node 7 under BAFL upon reception of
a packet are abstracted and shown in Alg 4 and its configurable
parameters are listed in Table Il. If the packet is destined for
i, it is passed to the upper layer. Otherwise it needs to be
forwarded. Before forwarding, the set of blacklisted remote
edges B is updated to include this packet’s blacklist (line 3).
Then the next hop is determined using the BAFL procedure. If
there is no next hop or if the size of the resulting blacklist of
the packet is greater than a preset limit n (BAFL = GF when
n = 0), packet is discarded. Otherwise, attempt is made to send
the packet to the chosen next hop j. If a certain number of
attempts  fail, that link i—j is blacklisted and added to the
set of blacklisted local edges B! (line 6). Another next hop
is chosen and this process is repeated till either the packet is
successfully forwarded or discarded.

The above description of packet processing shows how a
node learns about new local and remote disrupted edges. Since
an edge may be in disrupted state temporarily, a node needs
to unlearn blacklisted edges periodically. For the purpose of
unlearning the blacklist knowledge, a time stamp is associated
with each edge in these sets. Let ¢,,; be the time an adjacent
link 7— is added to the blacklist BL. Then it is removed from
B! at time t,,; + 7!, where 7! is a configurable parameter.
Similarly a non-adjacent link u—v is removed from vi if

TABLE Il
SUMMARY OF DIFFERENCES IN FORWARDING SCHEMES

Forwarding Operation

Scheme

SPF (i, p.dest, £) > j

GF (i, p.dest, g, gﬁ) —j

BAF (i, p.dest, €, BL, p.blist) — (j, p.blist)
BAFL | (i, p.dest, €, BL, p.blist, BT) — (j, p.blist)

not refreshed within a time interval 7". When 7" is set to O,
BAFL behaves like BAF. Otherwise, these values are set such
that 77 > 7!, i.e., local links are probed more frequently than
remote links. It should be noted that learning and unlearning
of blacklists can be done using data packets only.

D. Summary

The various forwarding schemes described so far differ in
the information they use in determining the next hop for a
packet. These differences are summarized in Table Ill. The
conventional shortest path forwarding (SPF) scheme computes
next hops based solely on the globally updated link state
information £. It does not use any knowledge it has about
the changes in the state of its adjacent edges until they are
globally notified lest it could cause forwarding loops. The GF
scheme_uses a node’s awareness of the state of its adjacent
edges B! and avoids forwarding loops by choosing only those
next hops that ensure forward progress. GF would be same
as SPF when there are no adjacent disrupted edges, i.e.,
B! = (). Our BAF scheme makes the packet carry a blacklist
when forward progress is not possible and uses this additional
information p.blist to recover from deadends. Finally, BAFL
scheme learns about the remote disrupted edges from packets
blacklists and takes advantage of this acquired knowledge B}
for early rerouting around disrupted edges.

V. PERFORMANCE EVALUATION

We now evaluate the performance of blacklist-aided for-
warding approach in terms of its reliability, optimality and
scalability. We show that BAF delivers packets reliably along
near-optimal paths with minimal overhead even when many
links and nodes are disrupted.

We first discuss our evaluation methodology. We randomly
generate a wireless network of 200 nodes in a 3km x 3km field
such that no two nodes are too close (at least 70m apart) as
is the case in suburban and rural communities. We assume
that the wireless transmission range of a node is 300m. Each
link between two nodes that are within the transmission range
is assigned a cost (a measure of its long-term throughput)
randomly chosen from 100 to 300. This base topology (£)
is assumed to be known to all the nodes in the network (via
global link state updates). To simulate the effect of disruptions,
a certain fraction of the links in the base topology are randomly
chosen and designated as disrupted. We then run our BAF
and BAFL schemes on the resulting topology for forwarding
packets between every node pair and collect various statistics.
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Fig. 3. Optimality of BAF: stretch

Each such experiment is run with 5 different seeds and we
report the aggregate results. Note that in this setting, BAF and
BAFL differ only in terms of optimality. Therefore we refer
to both by BAF unless it is necessary to distinguish them.

A. Reliability

We measure the reliability of BAF by the percentage of node
pairs between whom packets can be forwarded successfully us-
ing BAF among all reachable (having a path without disrupted
links) node pairs. Fig. 2(a) shows the reliability of BAF with
different n values when the fraction of disrupted links is varied
from 1% to 10%. With n = 0, BAF would be same as GF.
As the fraction of disrupted links increases, the delivery ratio
under GF falls off steeply. This shows that greedy forwarding
alone is incapable of handling disruptions. In contrast, the
delivery ratio improves dramatically under BAF even when
a packet’s blacklist is limited to at most one link. BAF with
n = 1 has a delivery ratio of more than 92% even though 10%
of the links are disrupted, which demonstrates the power of

1 2 3 4 5 6 7 8 9 10
fraction of disrupted links (%)

Reliability of BAF: delivery ratio with (a) link disruptions; (b) node disruptions

blacklist-aided forwarding approach. As expected, when there
is no constraint on the blacklist size (n = oc), we have perfect
delivery. The strength of BAF is that similar reliability can be
achieved even when blacklist size is limited to 3.

In some scenarios, a disruption could be such that a node
can not communicate with any of its neighbors, i.e., all its links
are disrupted. To see the effect of such correlated disruptions
of links on BAF, we evaluated its reliability in the face of
node disruptions. Roughly speaking, disruption of z fraction
of nodes corresponds to disruption of 2z fraction of links.
Fig. 2(b) shows the delivery ratio of BAF when the fraction
of disrupted nodes is varied from 1% to 5%. Once again there
is a significant improvement between GF (n = 0) and BAF
(n > 1). Compared to Fig. 2(a), in Fig. 2(b), the delivery ratio
of BAF with node disruptions is relatively lower than that
with individual link disruptions. This is not surprising since
BAF does not distinguish between node and link disruptions
and therefore would have to blacklist many adjacent links of
a disrupted node when that node is along the best path to
the destination. Consequently, a packet’s blacklist may reach
the limit and get dropped. However, with only n = 3, the
delivery ratio is more than 98% even when 5% of the nodes are
disrupted. As before, when the blacklist size is not constrained,
the delivery ratio is 100%. These results demonstrate that BAF
can deal with disruptions of many links and nodes without
global link state updates.

B. Optimality

Under BAF, a packet takes the usual shortest path till
it encounters a disrupted link and then gets rerouted along
the alternate path. Consequently, in the presence of link
disruptions, BAF may forward packets along longer paths
compared to the optimal paths computed based on the global
link state updates. BAFL improves upon BAF by having a
node learn from the blacklists of packets arriving at it and
utilize this knowledge about non-adjacent disrupted links in
forwarding other packets. For example, in the topology of
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Figure 1, packets from A to E are forwarded along the path
A—B—A—D—C—E while BAFL forwards them along the
path A—-D—C—E. Still, forwarding paths under BAFL may
not be optimal. For example in the topology of Figure 1, due to
the disruption of A—C, both BAF and BAFL forward packets
from F to A along the path F—C—D—A. Had node F been
made explicitly notified of the disruption of A—C, packets
would be forwarded along the shorter path F—G—D—A.
However, we show that the extent of this elongation due to
BAF and BAFL is not significant.

Let stretch of a path between a pair of nodes be the ratio
of the lengths of the path under BAF (BAFL) and the optimal
shortest path. When the weights of all the links are not same,
path length is said to be the sum of the weights of its links.
Note that without any link disruptions, there is no difference
between the BAF or BAFL paths and the optimal shortest paths
and so the stretch is 1. The stretch for packets from F to A
due to BAF or BAFL is % On the other hand, the stretch for
packets from A to E due to BAF is 12 while it is § (optimal)
under BAFL. The average and the maximum stretch due to
BAF and BAFL (7 set to co) for the pairs of nodes affected by
link disruptions is shown in Figure 3. The average stretch due
to BAF, across varying fraction of disrupted links, is less than
1.1 while the maximum is 4.3 when 10% links are disrupted.
BAFL improves the average stretch slightly compared to BAF
but brings down the maximum stretch significantly to around
2.5. It is worth pointing out that blacklist aided forwarding
decouples optimality from reliability. It ensures reliable deliv-
ery even under severe conditions. Optimality can be controlled
by adjusting amount of resources used for update traffic. In
other words, BAF allows a trade-off between scalability and
optimality of routing without impacting its reliability which is
not the case with many other routing protocols.

C. Scalability

We measure the scalability of BAF in terms of: i) how far
the information about a disrupted link is propagated via a
packet’s blacklist; ii) how large is the blacklist of a packet; and
iii) how many total blacklisted links a node sees under BAF.
First, we show in Fig. 4(a) the average and the maximum
distance from a disrupted link to the farthest notified node
measured in hops. Average blacklist propagation distance is

less than 2 hops regardless of the fraction of disrupted links
while the maximum distance goes up to 9 with 10% link
disruptions. This points out the limitation of schemes such
as [12] based on locally scoped updates with a fixed scope.
The chosen scope could be more than sufficient in some
cases and less than necessary in other cases resulting in either
unnecessary overhead or packet drops and forwarding loops.
On the other hand, BAF localizes the blacklist propagation
whenever possible and propagates the blacklist to distant nodes
when necessary for ensuring loop-free packet delivery.

Next, in Fig. 4(b), we plot the average and the maximum
sizes of a packet’s blacklist at each hop. The average is
close to 0 and increases only slightly as the fraction of
disrupted links increases, i.e., most of the packets do not
carry non-empty blacklist. Even the maximum blacklist size
is only 5. This shows that per packet overhead due to BAF
is negligible. Finally, Fig. 4(c) gives the the number of non-
adjacent disrupted links learned by a node through packet’s
blacklists. We considered only the nodes that see any blacklist
at all. The average number of blacklisted links seen by a node
is close to 1 and increases slowly as the fraction of disrupted
links increases. The fact that a node would see on the average
only 1 and at the most 8 blacklisted links out of around 59
(10%) disrupted links while ensuring reliable delivery is a
testimony of the effectiveness of on-demand state propagation
approach of BAF. These results confirm that communication
and computational overheads due to BAF are quite small and
establish BAF as a scalable scheme for reliable delivery.

V1. FINE-GRAIN BAF

We have so far shown that the BAF approach is suitable
for static multihop wireless networks where the state of a link
changes frequently between good and bad due to disruptions.
In this section, we demonstrate that the BAF approach can
effectively handle even fine-grain fluctuations in link quality.
The problem scenario addressed in this section can be de-
scribed as follows. A cost (e.g. ETX [11] or ETT [8]) is asso-
ciated with each link that represents its quality or throughput.
The short-term cost of a link may vary considerably while
its average long-term cost is relatively stable. According to
the BAF approach, the long-term cost of a link is conveyed
globally, whereas its short-term cost, if worse than the long-
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term cost, is propagated only locally. This contrasts with
our earlier formulation of the problem where it is assumed
that the state of a link is either good or bad, i.e., when it
is in good state, it has a finite cost representing its long-
term throughput, whereas its cost is infinity when it is in
bad state. Here, we propose an extension to BAFL referred
to as fine-grain blacklist-aided forwarding (FBAF) that can
deal with more fine grain variations in link quality. In the
following, we discuss the implementation FBAF and evaluate
its performance.

A. Implementation

The main difference between BAFL and FBAF is that along
with a blacklisted link, its current short-term cost is also
included under FBAF. We introduce some additional notation
to help describe the operation of FBAF. As before, £ denotes
the set of all edges, and ¢, the long-term cost of an edge e
according to the most recent global update. Due to causes such
as interference, the short-term cost of an edge may be worse
than its long-term cost in which case it is considered disrupted
and it may be blacklisted. The short-term cost of an edge e
according to a node i is denoted by ci. Among the set of all
edges &, the set of edges (both non-adjacent and adjacent) that
are known to ¢ to be in the disrupted state are denoted by B;.
We use P;.q(E,c) to refer to the shortest path from 4 to d
given the set of edges £ and their costs c. Similarly, the cost
of the shortest path is denoted by C;.q4(&, ¢).

Under FBAF, an edge e may be blacklisted, by a node 1,
if its current cost ¢f, according to 4, is worse than globally
updated cost ¢ resulting in the selection of an alternate next
hop. The procedure for computation of a packet’s blacklist and
its next hop are shown in Alg. 5. We first compute the shortest
path based on globally known set of costs ¢ (lines 1-2). If it
contains any of the blacklisted edges, they are included in the
packet’s blacklist (line 5). Also a new path is computed again
after revising the cost of those blacklisted edges (line 4). This
process is repeated till no new edges are added to the packet’s
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Alg 5 : Fine-grain Blacklist Aided Forwarding: FBAF(i, p)
cd«é ~ ~
: while ((’Pi/\,)p_dest(g, c') /\§l) \p.lgjist) #* 0 do
for all b € ((Pip.dest(E,¢) A Bs) \ p.blist) do

c, < ch

p.blist < p.blistUb
<= next(Pivp.dest (€, "))
if j # 0 then

if p.blist ! = then _

k <« lastdeadend(p.dest, p.blist, £, €)

10: if Cj'\»p.dest(gyé) < ckf\,)p_dest (5, 5) then
11: p.blist =0
12: return j

Nk wNMR
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blacklist. The rest of the procedure is similar to BAFL.

Alg 6 : Processing of a packet under FBAF: recv(i, p)

1: for all b € p.blist do
2:  if b.time > t; then
3 t, < b.time

4: ¢y <= b.cost
5
6:
T

: B; =B;Ub
j < FBAF(4,p)
send(j, p)

One of the details not mentioned above is that a timestamp
ti is associated with each link e at node . This timestamp
reflects the last time that link’s state is measured and updated
either globally or locally through a packet’s blacklist. It is
assumed that this value is monotonically increasing. A larger
timestamp indicates more recent state of a link. Whenever
a link b is included in the blacklist of a packet by a node
i, both its timestamp ¢! and its current cost ¢! are also
included. We use the notation b.time to refer to the timestamp
of a blacklisted link and b.cost, its corresponding cost. The
processing of a packet under FBAF is shown in Alg. 6. Based
on the packet’s blacklist, we update the blacklist cache at node
i. Only if the timestamp of a link in the packet’s blacklist is
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larger, the blacklist at node ¢ is updated. The FBAF procedure
is then used to compute the blacklist and next hop for the
packet, and it is forwarded to that next hop.

B. Evaluation

The performance of FBAF is evaluated using the link-level
measurements data from MIT Roofnet project [1]. The Roofnet
is a 38-node multi-hop wireless mesh network spread across
approximately six square kilometers where each node consists
of a PC with an 802.11b card connected to an omni-directional
antenna mounted on the roof. The corresponding measurement
trace records a delivery ratio for each of the 352 uni-directional
links every 200 ms for 90 sec. A detailed description of the
measurement setup and data collected can be found in [19].
It is observed that this network has many intermediate quality
links and thus making it suitable for evaluating FBAF.

The FBAF formulation is based on the notion of short-term
cost and long-term cost which are determined in our evaluation
setting as follows. Based on the forward delivery ratio f (of
link i—7) and backward delivery ratio b (of link j—1) given by
the trace, the short-term cost or ETX3 of link i—j is computed
as ﬁ [11]. The short-term cost of a link is determined every
200 ms based on the corresponding delivery ratios. The long-
term cost of a link is computed as the average ETX since the
last global update. The global update interval under FBAF is
set to 10 sec or 30 sec.

To evaluate the optimality of FBAF, we measure the stretch
under FBAF w.r.t the optimal routing. Fig. 5(a) and Fig. 5(b)
show the average stretch among all the node pairs under FBAF
with global update interval of 10 sec and 30 sec. For both
scenarios, the average stretch is quite close to 1 and always
less than 1.25. To demonstrate the scalability of FBAF, we plot
the number of blacklisted links learned by a node in Fig. 6(a)
and Fig. 6(b). The average size of a blacklist maintained by

3Since ETX is defined only for bidirectional links, we discard unidirec-
tional links such as i—j with no corresponding j—i. A total of 44 such
unidirectional links exist and our experiments include the rest 308 links.

a node under FBAF in both cases is insignificant considering
that there are 308 links in the network. It is worth noting that
increasing the global update interval from 10 sec to 30 sec has
little impact on the overall performance of FBAF. Once again
these results illustrate the efficacy of localized on-demand link
state propagation effected by the BAF approach.

VII. RELATED WORK

Many routing schemes are conceivable for multihop net-
works with static nodes and dynamic links. An ideal scheme
delivers packets to destinations (reliable), along the shortest
paths (optimal), with minimal overhead (scalable). In this
section, we discuss various possible routing alternatives and
argue that link state routing with blacklist-aided forwarding is
the most suitable one for static multihop wireless networks.

There have been several proposals for making link state
routing scale for ad hoc networks. They are categorized into
efficient dissemination approaches and limited dissemintation
approaches [20]. OLSR [16] is an efficient dissemination based
approach that propagates updates through the entire network
but more efficiently than traditional flooding. Fisheye State
Routing (FSR) [12] and Hazy Sighted Link State (HSLS)
routing [20] are limited dissemination based schemes that
update the nearby nodes at a higher frequency than the remote
nodes that lie outside a certain scope which is static and
therefore could be more than sufficient in some cases and less
than necessary in other cases for ensuring loop-free packet
delivery. Blacklist-aided forwarding can be catergorized as a
limited dissemination approach, but unlike FSR and HSLS it
effectively notifies only the nodes in the vicinity of a disrupted
link that need to be informed and delivers reliably despite
multiple simultaneous disruptions.

It is interesting to contrast ideas of blacklist-aided for-
warding with similar ideas in other schemes. Blacklist-aided
forwarding works along the similar lines of position based
forwarding [6] and can be thought to switch between greedy
and recovery modes. But it does not have the same deficiencies



as position based forwarding in terms of optimality and
reliability. Blacklist aided forwarding is similar in spirit but
opposite in effect to loose source routing. While a packet
under loose source routing carries a list of nodes that must be
traversed, under blacklist aided forwarding it contains a list of
links that must not be traversed. Also, a packet’s loose source
route is determined at its source while its blacklist is updated
during the flight to its destination. It is suggested that DSR [9]
can benefit from caching “negative” information about links
that are currently providing highly “variable” service. Also,
DSR allows backtracking but prevents a packet from being
salvaged more than once. Our approach lets each packet
explicitly carry a blacklist and allows both backtracking and
salvaging multiple times during a packet’s flight.

Link Quality Source Routing (LQSR) is scheme proposed
recently [21] specifically for static multihop wireless networks.
LQSR is based on DSR but uses a link cache instead of route
cache and is essentially a link state routing protocol. Under
LQSR, each packet carries the source route and intermediate
node updates the source route with the current metric for
outgoing link. The receiver has to send either a gratuitous
reply back to the source or piggyback it on data packet in
which case it effectively carries two source routes. In addition,
LQSR uses a proactive background mechanism to maintain
the metrics of all links. This is done by piggybacking the link
info on route requests and sending a dummy route request
message. In contrast under BAF, forwarding is done hop by
hop and each packet carries only the blacklist in addition to
the destination address.

Blacklist-aided forwarding can be categorized as on-demand
table-driven link-state routing scheme. The advantages and
disadvantages of table-driven, pro-active, link-state routing
for mobile ad-hoc networks are well studied [4]. In general,
they avoid the route discovery latency at the expense of
route maintenance overhead. It is said that proactive routing
protocols suffer the disadvantage of repairing a broken route
even though no applications are currently using it. That would
not be the case with blacklist-aided forwarding. When a
degraded link were not to be traversed by a packet, that link
would not be blacklisted and it would not cause any overhead
under blacklist-aided forwarding.

VIIl. CONCLUSIONS AND FUTURE WORK

In this paper, we focused on the design of a scalable scheme
for reliable delivery in static multihop wireless networks with
frequent disruptions. We proposed a link-state-based blacklist-
aided-forwarding approach that provides loop-free delivery
despite disruptions through on-demand propagation of infor-
mation on disruptions via blacklists carried in data packets
while taking advantage of static adjacencies of nodes. BAF
guarantees delivery of packets to all reachable destinations
irrespective of the extent of disruptions. We have evaluated
BAF and demonstrated that it is not only reliable but also near-
optimal and highly-scalable. We have also shown that BAF
approach can be extended to effectively handle link quality
variations at a finer scale than just good and bad.

The main limitation of this paper however is that we
have only presented preliminary evaluation results of BAF
to demonstrate its features. We have not compared its per-
formance against similar schemes such as LQSR [21] and
HSLS [20]. We are currently simulating these schemes using
NS2 [22] and performing a thorough evaluation of BAF and
other schemes that are targeted for static multihop wireless
networks. We will also be implementing BAF and conducting
real-world experiments to further bolster the case of BAF.
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