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ABSTRACT
The rapid growth of location-based applications has spurred ex-
tensive research on localization. Nonetheless, indoor localiza-
tion remains an elusive problem mostly because the accurate tech-
niques come at the expense of cumbersome war-driving or addi-
tional infrastructure. Towards a solution that is easier to adopt,
we propose SpinLoc that is free from these requirements. In-
stead, SpinLoc levies a little bit of the localization burden on the
humans, expecting them to rotate around once to estimate their
locations. Our main observation is that wireless signals attenuate
differently, based on how the human body is blocking the signal.
We find that this attenuation can reveal the directions of the APs
in indoor environments, ultimately leading to localization. This
paper studies the feasibility of SpinLoc in real-world indoor en-
vironments using off-the-shelf WiFi hardware. Our preliminary
evaluation demonstrates accuracies comparable to schemes that
rely on expensive war-driving.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Design, Experimentation, Performance
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1. INTRODUCTION
Despite numerous research efforts [1–8], indoor localization is
still not a mainstream technology. We believe that the main hur-
dle lies in most of them requiring careful war-driving. Crowd-
sourcing this operation [9] is an attractive option, but unlikely to
be adopted broadly since many users may not be willing to re-
port their signal strength measurements to a localization server.
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Moreover, due to the lack of GPS in indoor settings, gathering
ground-truth is also hard. SecureAngle [10], an innovative PHY
layer technique presented in 2010, computes the direction of a
WiFi-capable device with respect to an AP. While certainly ap-
pealing, the timeframe for ubiquitously installing special APs –
with 8 or more antennas – is not a short-term proposition. Nonethe-
less, we believe this is the right direction to approach indoor lo-
calization, and propose to approximate it today, with off-the-shelf
hardware, zero infrastructure, and absolutely no war-driving. The
only tradeoff is that the user needs to make a slight effort – a spin
– every time she needs her location. We explain this through an
example, followed by the technical underpinnings.

Consider a shopping mall where the user intends to localize her-
self. With SpinLoc installed on her phone, she turns on the appli-
cation, and makes a 360◦ rotation at her current location. Using
the signals recorded during the rotation, and the already-known
AP locations, SpinLoc computes the location of the user (detailed
later). The location is marked on the floorplan of the mall and
displayed on the phone screen. Other than making the floorplan
and AP locations available to an Internet database, the mall au-
thorities are not expected to make any investment – no infras-
tructure installation; no war-driving. We show that in such set-
tings, SpinLoc can offer localization accuracies in the order of
6.5m with 4 audible APs in the vicinity. With more APs, the me-
dian accuracy can improve upto 5m.

The technical underpinning of SpinLoc is actually quite simple.
Without loss of generality, consider an AP located in the west-
ward direction. When the user spins at her location, at some
point the phone is between the AP and the user’s body, and at
a different instance, the body lies between the AP and the phone
(Figure 1). Given that the human body is a significant attenua-
tor of WiFi signals (in the 2.4 and 5G H z frequencies), the signals
arriving at the phone differ significantly between these two con-
figurations. In particular, when the phone is between the AP and
the user (Figure 1(a)), the direct path from the AP to the phone is
strong. However, when the user’s body lies between the AP and
the phone (Figure 1(b)), the direct path is severely blocked, re-
sulting in large attenuation. By recording the compass direction
at which this attenuation is maximum, it is feasible to infer the
AP’s direction. With multiple APs in the vicinity, the direction to
each AP can be computed from the same spin. The knowledge
of all AP directions permits triangulation, ultimately yielding an
estimate of the user’s location.

Importantly, SpinLoc does not use received signal strength (RSSI)
as reported by WiFi cards. While RSSI may be somewhat appli-
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Figure 1: User orientation w.r.t AP: (a) facing (b) blocked

cable in outdoor environments [11], rich multipath in indoor en-
vironments derails RSSI-based approaches. To circumvent this
problem, SpinLoc relies only on the signal strength of the direct
signal path, i.e., the signal component that traverses along the
straight line joining the AP and the mobile device. Fortunately,
this information can be extracted from the power-delay profile of
a link, a physical layer information that is exported by the Intel
5300 card. Thus, if designed well, SpinLoc can be a candidate for
near-future deployment using off-the-shelf hardware.

Of course, building such a system to cope with real-world sce-
narios entails a range of technical and social challenges: (1) The
phone’s compass error may be significant – how does that affect
SpinLoc’s accuracy? (2) The attenuation of the direct signal path
may vary with other humans in the environment – how can Spin-
Loc cope with such variations? (3) Will the idea work even when
the direct signal path is weak? This paper addresses these ques-
tions and presents promising evidence to justify deeper inves-
tigation. The proof-of-concept is built on Dell laptops, Android
phones, and Cisco APs, and achieves localization accuracy of 5 to
12m in a university cafe and an engineering building. Even when
the compass errors are large (upto 30◦), the accuracy does not
degrade more than 12m, so long as there are 5 APs within com-
munication range. Finally, the energy footprint of the system is
small, suggesting real-world viability.

2. INTUITION AND MEASUREMENTS
We begin this section with a brief background on wireless mul-
tipath propagation, followed by our key hypothesis and initial
measurement-based verification.

2.1 Background
Wireless signal propagation is similar to light. A transmitted sig-
nal scatters in all radial directions and reflects on different sur-
faces, including walls, furnitures, etc. Hence, in addition to a di-
rect path from the transmitter to the receiver, copies of the same
signal arrive through many reflected paths, each with a different
delay and attenuation. The wireless radio combines these multi-
path copies, and ultimately extracts the information embedded
in the signal. Figure 2 illustrates 3 example signal paths from the
transmitter to the receiver.

Among all the multipath copies, we define the direct path as the
straight line joining the transmitter and the receiver. To under-
stand when the human is precisely between the AP and the phone,
SpinLoc must track only the direct path signal. Otherwise, if Spin-
Loc uses the union of all signal components (as is the case with
RSSI), it would be difficult to identify when the human has blocked
the signal. Figure 3(a) explains this next with an example.

In Figure 3(a), assume that the two signal components have been
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Figure 2: Transmitted signal travels through multiple paths be-
fore reaching the receiver
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Figure 3: (a) Spinning will not offer the AP direction if energy
on both signal paths are added. (b) Power delay profile of an
indoor transmission.

equally attenuated, one due to absorption by the human, and
the other due to multiple reflections. Now in both configurations
(i.e., the human is on the left of the phone and blocking the di-
rect path, or on the right of the phone and blocking the reflected
path), the sum of the incident energies will be identical, making
it difficult to infer the AP’s direction. However, if only the direct
path signal is used, one might expect a drop when the human is
on the left of the phone, but not when she is on the right. This
motivates the need to only use the direct path signal. Unfortu-
nately, today’s WiFi interfaces do not provide the individual sig-
nal components from which we can pick the desired signal com-
ponent. RSSI, readily available from almost all interfaces, is the
sum of energies over all signal components, and thereby, unreli-
able in multipath-rich indoor environments.

In search of a mechanism to extract the direct path signal, we
learnt that the Intel 5300 WiFi card exports some physical layer
information, that can be translated to the power-delay profile (PDP).
Loosely, the PDP captures the amount of energy incident on the
receiver at different delays. Since the direct path arrives quicker
at the receiver than all other reflected paths, we find that pick-
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Figure 4: Measured EDP across user orientation when (a) AP is visible to phone (b) AP is behind a wall but close to phone (c) AP is
behind a wall but far away from phone.

ing the least-delay value of the PDP essentially provides us with
the energy of the direct path. Figure 3(b) shows the PDP of an in-
door transmission, where the AP was visible to the laptop. Since
the direct path does not pass through obstructions in this case
(and thus gets less attenuated), it yields the strongest signal com-
ponent. While this is typical, it is certainly possible that a wall
obstructs the direct path, making it weaker than other reflected
paths. Importantly, SpinLoc is not sensitive to the relative en-
ergy of the direct path against that of other paths; instead it fo-
cuses only on the absolute energy of the direct path, denoted EDP.
Comparing EDP across different configurations (during a spin)
will help in revealing the AP’s direction.

2.2 SpinLoc: Hypothesis
We summarize the SpinLoc intuition as follows. When a human
is present between an AP and her own mobile device (as in Fig-
ure 1(b)), her body attenuates the direct signal path from the AP.
This is because the human body with high water content has
been shown to be a significant absorber of (2.4 and 5 GHz) WiFi
signals [11]. Now, when the human turns 180◦ from this orienta-
tion (Figure 1(a)), her phone is located between her body and the
AP, and is not subject to the attenuation. As a generalization of
this, we present the following hypothesis: if a user rotates 360◦ at
her own position, the direction that exhibits minimum energy for
the direct path (EDP) is the direction opposite to the AP. If such
directions can be computed for at least 3 APs, then triangulation
is feasible, ultimately yielding the user’s location.

We verify our hypothesis using measurements from off-the-shelf
Intel 5300 cards. This card exposes per-subcarrier channel fre-
quency response (CFR) to the user – an inverse fast fourier trans-
form (IFFT) of the CFR outputs the power delay profile (PDP).
We obtain the energy of the direct path (EDP) from the PDP, and
track its variation as the user spins in her location. Three impor-
tant questions are of interest. (1) Does minimum EDP accurately
yield the AP’s direction. (2) Does the presence of additional hu-
mans in the vicinity affect our hypothesis? (3) Can RSSI be used
to also infer the direction of the AP? The following measurements
are designed to answer these questions.

2.3 Measurement and Verification
Our experiments are performed in a relatively busy engineering
building, with faculty offices and classrooms. To simultaneously
measure the PDP and the user’s compass orientation, we taped
a Google NexusOne phone to a laptop (this is because we did
not find any device that has the Intel 5300 card and a compass).

While holding this laptop-phone device, we ask a user to rotate
360◦ at her location. On average, a rotation lasts around 10 sec-
onds. The device is made to receive approximately 100 packets
per second and record the energy of the direct path (EDP) for each
received packet. We average the EDP over all packets received in
a given orientation. Then, to cope with fast fading, we smoothen
the series of per-orientation EDP by using a simple moving aver-
age (discussed later).

We begin with an experiment where the AP is visible to the user
– this implies the existence of a strong direct path when the user
faces the AP. Figure 4(a) plots the EDP as a function of the user’s
orientation with respect to this AP (the 3 curves are from 3 dis-
tinct locations). Assuming the AP’s direction to be the 0◦ refer-
ence, the EDP should ideally be minimum at 180◦. Evident from
the graph in Figure 4(a), the EDP dip is indeed close to 180. A
pertinent question is whether this technique holds even when
the direct path is not as strong (such as when it passes through
an obstruction). To this end, we place the AP behind a wall that
blocks the direct path between the AP and the mobile device. Fig-
ure 4(b) shows a consistent behavior even in this scenario – the
maximum EDP dip is still close to 180◦. In a subsequent experi-
ment, we keep the AP behind the wall and move the user far away
from the AP, forcing the WiFi signal to be weaker. Still, the EDP
dips around 180 although the dip is less sharp (Figure 4(c)). We
find consistent results over multiple other experiments, suggest-
ing promise with SpinLoc.
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Figure 5: Measured direct path energy across user orientation
in presence of another blocking human.

Effect of other humans: We next investigate if the presence of
other humans in the vicinity derails SpinLoc. For this, we per-
form a controlled experiment. We position a second human on
the direct path between the AP and the device user – the gap be-



tween the two humans is 2m. This is expected to reduce EDP
even when the user is facing the AP. Figure 5 plots the variation
of EDP when the user rotates Observe that although the EDP dip
is less sharp, the minimum value is still near 180◦. This suggests
SpinLoc’s robustness to humans in the environment.

Why not use received signal strength (RSSI)? Previous work has
shown that humans can attenuate the RSSI of a signal by block-
ing it [11], and this can be used in outdoor environments to es-
timate the AP’s direction. However, this observation does not
extend to indoor environments, where wireless propagation is
heavily dominated by multipath. This is because RSSI can be ap-
proximated as the sum total of energy over all the signal paths.
As explained in Section 2.1, the amount of energy blocked by
the human in different orientations can be the same, resulting
in no clear dip (or multiple dips). Figure 6 captures this behavior
– when the user spins, the RSSI dips are non-unique, and often
happen far away from the ideal 180◦ orientation.
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Figure 6: Measured RSSI across user orientation.

3. SYSTEM DESIGN
Translating SpinLoc’s high level idea into a functional prototype
entails two tasks: (1) How to find the direction to an AP as pre-
cisely as possible? (2) How to localize a mobile device with impre-
cise direction information? Of course, the simplicity of design is
vital for SpinLoc because the entire operation must be executed
on the mobile device – we assume no reliance on any localization
server.

3.1 Finding AP direction with SpinLoc
We observe that as the user spins, her body gradually blocks and
subsequently unblocks the direct signal path from the AP to the
device. Even when the user is at 90◦ from the AP, the direct path
signals may still be partially blocked, perhaps by the user’s arms
or shoulders. Consequently, the energy on the direct path (EDP)
will decrease and increase, forming crests and troughs, as shown
in Figures 4. We exploit the troughs to correctly identify the AP
direction. A naive approach might be to find the angle corre-
sponding to the minimum EDP and declare the opposite angle
as the correct AP direction. But this approach may not be robust
in the presence of fast fading and measurement noise. The di-
rect path signal may combine with other signals in the air (from
other interfering transmissions), causing its energy to fluctuate
instantaneously even without the human obstacle. However, av-
erages over multiple packets can be expected to eliminate these
fluctuations. Therefore, we perform a moving average on the se-
quence of EDPs, much like a low pass filter. Figure 7 shows the

effect – the dashed curve shows the raw EDP variations while the
solid line shows the same variation after filtering. Clearly, filter-
ing makes the blocking effects easier to recognize. SpinLoc now
declares the angle corresponding to the minimum EDP as the an-
gle opposite to the AP.
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Figure 7: (Un)Filtered EDP w.r.t. user’s orientation.

3.2 Localization using Angle Information
Once the angle to each of the APs is estimated – note that Spin-
Loc estimates all these angles in one spin – SpinLoc determines
the user’s location using triangulation. Let us denote the esti-
mated angle from the phone to APi as θi . For triangulation, we
draw a line from APi along the direction of ((θi +180) mod 360);
this is the opposite direction of θi . Denote this line as Li (Figure
8). SpinLoc then computes the intersection points of all pairs of
< Li ,L j >, i 6= j . The centrioid of these intersecting points is de-
clared as the estimated location of the device.

We tune this method as follows. We find that SpinLoc’s angle es-
timation accuracy reduces at weaker signal strengths, and hence,
we choose only relatively strong APs (20dB or stronger) for local-
ization. Furthermore, if two APs are located at nearly the same
direction, their intersection point is likely to be far away from the
mobile’s actual location (in the extreme case, if the two APs are
aligned, their intersection point will be located at infinity). To re-
move such outliers, SpinLoc uses the stronger of the two APs for
localization when their estimated angles differ by less than 20◦.
Figure 8 illustrates the overall process.

Leveraging RSSI information: We explore if using the RSSI infor-
mation can benefit SpinLoc. Although RSSI is a crude indicator of
distance, our hypothesis is that it may be beneficial in conjunc-
tion with reasonably good angular information. Thus, based on
the recorded RSSI, we estimate the distance between the device
and APi as Di

1. Now for each APi , we plot a point that is located
Di distance away in the direction of (θi +180) mod 360. SpinLoc
then computes the centroid of these points as the estimate of the
device’s location. We evaluate the performance in the next sec-
tion.

3.3 Points of Discussion
The locations of APs within a building (such as a mall or museum)
have to be made available to SpinLoc – is this realistic? We be-
lieve that any indoor localization system will need the floorplan
to provide a semantic meaning to the computed location. If the

1We use standard pathloss equations, with pathloss exponent of
3 for indoor environments.
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Figure 8: Illustration of SpinLoc’s localization procedure: Only
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mall administration is willing to extend the floorplan, the AP lo-
cations may be easy to add.

SpinLoc is reactive because the user invokes localization – can Spin-
Loc be proactive? With the phone compass always on, it might be
possible to track naturally occurring rotations of the user, when
she turns corners or makes about turns. SpinLoc may then be
able to deduce the direction of a subset of APs, and combine with
some degree of dead-reckoning to estimate the user’s location.
The viability of such a scheme is one of our main topic of inves-
tigation.

To get beacons from all the APs, does SpinLoc require the APs to be
on the same channel? This is not necessary because every time
the user invokes SpinLoc, the WiFi interface in the device can
perform a channel scan. This will permit the device to receive
beacons from all APs. Of course, the indoor space would need to
have at least 3 APs in the audible range, which we believe is quite
common.

4. PERFORMANCE EVALUATION
Prototype and Experimental Setup: As mentioned earlier, we
implement SpinLoc using a laptop with an Intel 5300 wireless
card and a Google Nexus One phone. The phone is time synchro-
nized and physically attached to the laptop – it records the com-
pass orientation and sends it to the laptop. The laptop receives
100 small beacon packets per second from Cisco E4200 APs, op-
erating at 40M H z on the 2.4G H z band. The user spins carry-
ing the laptop-phone module in her hand. We evaluate SpinLoc
across 55 locations in two environments: (1) engineering build-
ing with offices and classrooms and (2) a university cafe. In the
engineering building, we experiment with 6APs at 30 locations.
The university cafeteria is relatively smaller; we deploy 4 APs and
report results from 25 locations. We covered approximate areas
of 1000 m2 and 800 m2 respectively in these buildings.

Angle Determination Accuracy: At each of the 55 locations, Spin-
Loc estimates the angle of every audible AP2. Since we know the
ground truth for each of these APs, we plot SpinLoc’s angle es-
timation error as a CDF in Figure 9(a). Evidently, the mean is
less than 20◦, but for around 20% of the cases, the errors can be
as high as 40−60◦. We postulate that the high errors are due to
weaker links. To investigate this further, we plot the average an-
gle error as a function of link SNR in Figure 9(b). The figure shows
that the angular error indeed decreases with increasing SNR. The
reason is that weak links may not have a significant direct signal
path and hence less likely to exhibit a sharp EDP dip, even when
the user blocks the signal. This led us to exclude weak APs in the
design of SpinLoc.
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Figure 9: (a) SpinLoc angle estimation error (b) Error decreases
with increasing SNR, stronger the AP better the accuracy.

Localization Accuracy: The above results suggest that links stronger
than 20dB on average, have less than 20◦ angle error. Hence,
for better accuracy, SpinLoc only uses APs that meet this crite-
ria. Figure 10(a) plots the CDF of localization error across 55 lo-
cations. The median localization accuracy is 7.2 meters. Figure
10(a) also shows the benefit of leveraging RSSI – the median ac-
curacy improves to within 5 meters. Both the approaches outper-
form RSSI based triangulation which has a median accuracy of
14.7 meters (Figure 10(a)). Figure 10(b) shows that the accuracy
improves with increasing number of (strong) APs at a given loca-
tion. Considering that SpinLoc does not need anything else other
than the APs’ location, we believe these results may be deemed
promising. Of course, conclusive results about SpinLoc’s accu-
racy will require far more extensive evaluation.

2We use the term angle and direction interchangeably.
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5. LIMITATIONS AND NEXT STEPS
We discuss a few concerns with SpinLoc, and potential ways to
alleviate them.

Will SpinLoc need frequent spins for navigation? SpinLoc trades
off wardriving and infrastructure for some user involvement. Whether
this is acceptable to users is likely to depend on how frequently
they need to spin, say within a mall. We believe it is possible
for SpinLoc to combine naturally occurring turns and spins of
users, with other direction and distance estimation methods, to
reduce the need for frequent spins. Our ongoing work is directed
towards a spin-in-the-worst-case type of an approach.

Will SpinLoc consume substantial energy? SpinLoc neither needs
to download signal maps, nor does it require CPU-intensive match-
ing operations. In this regard, the energy consumption is likely to
be quite low. However, if the region is sparse in WiFi APs, the WiFi
channel scanning operation may consume some energy. How-
ever, SpinLoc could stop scanning once it has discovered the req-
uisite number of APs. We plan to investigate the energy implica-
tions in greater detail in future work.

6. RELATED WORK
A wide variety of approaches have been proposed for indoor lo-
calization each incurring a different form of overhead. RF sig-
nal strength-based localization schemes such as RADAR [1], Ho-
rus [2] and PinLoc [12] perform detailed site surveys a priori to
generate WiFi based location fingerprints. Place Lab [3] and Ac-
tive Campus [4] attempt to reduce the overhead of calibration,
coupling information from WiFi and GSM base stations. Time-

based techniques such as PinPoint [5], and TPS [6] utilize time
delays in signal propagation to estimate distances between wire-
less transmit-receiver pairs. The Cricket system [7, 8] utilizes ul-
trasound and RF signals, requiring ultrasound detectors on mo-
bile devices for localization, limiting its applicability.

Angle-of-arrival based techniques utilize multiple antennas to es-
timate the angle at which signals are received, and then geomet-
rically localize devices [10, 13]. These techniques require quite
sophisticated systems of 4 to 8 antennas and non-trivial signal
processing capabilities, unlikely on mobile devices in the near
future. Borealis [11] attempts to find the direction of a rogue
AP by rotating a smartphone around a signal blocking obstacle.
They rely on RSSI only and hence are limited to outdoor envi-
ronments. SpinLoc’s ability to utilize PHY layer information from
off-the-shelf WiFi cards for effective indoor localization, makes it
a candidate for immediate adoption.

7. CONCLUSION
This paper explores the feasibility of localizing a device by delib-
erately inserting blockages in wireless signal reception. If a user
spins at her current location, we find that the direction of the AP
can be determined with a median error of 20◦. When combined
with RSSI information, the location accuracy can reach almost
5m in dense WiFi conditions. While today’s best indoor localiza-
tion schemes may be comparable (or slightly better), they come
with the overheads of war-driving, additional infrastructure, or
heavy computation. We believe SpinLoc may be a simple and
alternative approach, perhaps more suited to near-term deploy-
ment in indoor environments.
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