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ABSTRACT

This paper develops techniques using which humans can be
visually recognized. While face recognition would be one ap-
proach to this problem, we believe that it may not be always
possible to see a person’s face. Our technique is complemen-
tary to face recognition, and exploits the intuition that human
motion patterns and clothing colors can together encode several
bits of information. Treating this information as a “tempo-
rary fingerprint”, it may be feasible to recognize an individual
with reasonable consistency, while allowing her to turn off the
fingerprint at will.

One application of visual fingerprints relates to augmented re-
ality, in which an individual looks at other people through her
camera-enabled glass (e.g., Google Glass) and views informa-
tion about them. Another application is in privacy-preserving
pictures — Alice should be able to broadcast her “temporary
fingerprint” to all cameras in the vicinity along with a privacy
preference, saying “remove me”. If a stranger’s video happens
to include Alice, the device can recognize her fingerprint in
the video and erase her completely. This paper develops the
core visual fingerprinting engine — InSight — on the platform of
Android smartphones and a backend server running MATLAB
and OpenCV. Results from real world experiments show that
12 individuals can be discriminated with 90% accuracy using 6
seconds of video/motion observations. Video based emulation
confirms scalability up to 40 users.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware; C.2.4 [Computer-Communication Networks]: Distributed
Systems
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Figure 1: Example social event: Alice views people’s posts dis-
played in her Google Glass. The whole operation orchestrated
by the InSight server running in the cloud.

1. INTRODUCTION

Imagine a near future where humans are carrying smartphones
and wearing camera-embedded glasses, such as the Google
Glass. This paper intends to recognize a human by looking at
him from any angle, even when his face is not visible. For in-
stance, Alice may look at people around her in a social gathering
and see the names of each individual - like a virtual name tag —
suitably overlaid on her Google Glass display. Where revealing
names is undesirable, only a short message could be posted.
People at the airport could post “looking to share a cab ”, stu-
dents in a startup event could post “seeking a co-founder”, and
Alice could view each individual’s posts above their heads (Fig-
ure 1). In general, the ability to differentiate individuals visually
could enable human-centric augmented reality [21, 30].

Face recognition [29, 34] is a possible approach to the above
problem. However, faces are not always visible. Moreover, many
people express discomfort releasing their profile pictures to
the cloud, given that it can become a permanent identifier for
de-anonymizing other content in the web [7]. Ideally, what is
necessary is a temporary visual identifier, that can be activated at
will, and will identify the individual momentarily but not later.

This paper pursues the intuition that human motion patterns
and visual appearance (e.g., clothing colors) can together serve
as a temporary visual fingerprint. The key idea is simple. Con-
sider Alice looking at an individual X through her Google Glass
(or smartphone camera). The InSight server could request Al-



ice to upload a short video snippet of that individual, and use
the frame sequence in this video to extract a motion fingerprint
of X, denoted by V;g””e. This motion fingerprint is essentially
a string of micro-activities such as walking direction, stepping
frequency, stopping, turning, etc., extracted from the video. The
server can simultaneously request sensor data (e.g., accelerom-
eter, gyroscope, compass) from people around Alice, and extract
a similar motion fingerprint from it. Let M; denote this sensor-
based motion fingerprint for user i. By matching V)’(‘” ice against
M; of each user i, the server can find the strongest match, say
for i = Bob. The server can convey to Alice that she is looking at
Bob and display Bob’s message (e.g., “looking for interns”) on her
glass.

Generalizing, visual fingerprints may not only be from motion
patterns, but also from clothing colors, body structure, etc. If
Alice recognizes Bob through motion fingerprints, she can ex-
tract Bob’s clothing features and update a database inside the
InSight server. In the steady state, the database would cache
clothing fingerprints for different individuals. When John looks
at Bob later, his Glass only needs to send an image of Bob. The
server can extract the clothing fingerprint from the image sent
by John and match against pre-computed clothing fingerprints,
ultimately notifying John that he is looking at Bob. In summary,
we believe that a person’s non-facial visual appearance can serve
as an identifier. There is evidence of this opportunity given that
humans can often recognize other humans without looking at
their faces. This paper demonstrates that (wearable) cameras
and smartphones can together achieve the same.

Realizing the above idea presents a number of challenges. Ex-
tracting fingerprints from sensors and videos can be non-trivial,
even though a variety of tools are available in the signal process-
ing and computer vision literature. The fingerprints need to be
general for scalability across individuals, while being adequately
discriminating for identification. Moreover, fingerprint match-
ing must be done across incompatible dimensions (sensor and
vision) requiring the system to cope with normalization issues,
dynamic ranges, depth, perspectives, etc. Even for matching
clothing fingerprints, challenges emerge due to lighting condi-
tions, wrinkles, and various view angles — the front and back of a
dress may have different colors and patterns. Finally, the system
needs to support incremental deployment (i.e., not everyone
may run InSight) while bandwidth and energy overheads should
be minimal.

While developing a robust system is challenging, we find that
the rich diversity in human behavior offers hope. People
walk/turn/pause at different time instants, even when they
are walking in groups - observed long enough, their motion
sequence should begin to become unique. Encouraged by this
opportunity of uniqueness, we adopt a “digital” approach to
processing the information. Put differently, we express finger-
prints as strings defined on a pre-specified motion alphabet. An
example fingerprint could be EEEOOR..., where E, O, and R cor-
respond to the actions of walkEast, noMotion, and turnAround,
respectively. Such motion alphabets are extracted from both
sensors and videos, allowing InSight to employ string matching
algorithms for comparing fingerprints.

InSight translates these ideas into a functional system using An-
droid Galaxy phones and videos taken from Google Glasses. We
have not attained real-time operations yet — the server runs on
MATLAB with links to OpenCV and machine learning libraries,

and returns the result within ten seconds. Evaluations from real
world demonstrate the ability to discriminate 12 individuals with
90% accuracy, using 6 seconds of video/motion observations.
Video based emulation shows the ability to scale the technique
to the order of 40 people. The main contributions may be
summarized below.

o Identifying the possibility that human clothing colors and
motion patterns could serve as temporary fingerprints, com-
plementing face recognition. Using these fingerprints as new
degrees of freedom for human-centric visual applications.

o Quantifying the viability and accuracy of fingerprinting with
real-world human behavior. Building a fully functional proto-
type and demonstrating promise through micro-benchmarks,
real-user evaluation, and larger scale video simulation.

The subsequent sections will expand on these contributions be-
ginning with an overview of InSight, followed by detailed system
design. However, we first discuss a few potential applications.

2. APPLICATIONS

The goal of this paper is to develop the core visual fingerprint-
ing primitives, with the hope that they will enable new use-cases
or aid known applications. We briefly discuss a few possibilities
here different from the augmented reality application described
above.

(1) Privacy Preserving Pictures/Videos (PPP)

The proliferation of cameras, and wearables cameras in recent
years, has raised various discussions on privacy. Many citizens
have expressed discomfort at the thought of being included in a
video or a picture taken by a stranger, even if it was legally done in
a public place. Today’s solution is to hastily move out of the cam-
era’s field of view when it is clear that a picture is being taken. Of
course, this is not always possible because people are often un-
aware that videos or pictures are being taken around them. Sen-
sitized by this, many privacy conscious users have wished for a
capability to express their privacy preferences, such as “please
remove me from the video”.

Now, assume Alice is taking a video, and Bob, present in the
field of view, intends to be removed from Alice’s video. Bob
can share his motion fingerprint with the server. When Alice
takes the video and sends it to the server, visual fingerprints can
be computed for every individual in the video, and compared
against Bob’s. A match suggests Bob is indeed in the video -
InSight can then remove Bob by replacing him with background
imagery in the video. Authors in [6] recently proposed using QR
codes on clothing as a means of expressing privacy preferences —
we believe InSightis a more usable solution.

(2) Visual Addressing and Communication

A grocery store is in conversation with us regarding the applica-
bility of InSight for customer localization and communication.
The idea is to use wide-angle surveillance cameras mounted on
high ceilings to observe the top view of moving customers (each
customer visible to the camera as a small blob). Consider the
case where Alice is shopping in the store and her smartphone
records her motion fingerprint, Myj;... The surveillance cam-
era could also compute her motion fingerprint from the video
frames, Vy;;c.. Of course, it might take longer since the motion



alphabet (from a top view) will be limited — the camera would
only detect moving, paused, and moving direction. However,
even these few bits of information should be adequate to disam-
biguate customers in the scale of a minute (no two customers
move/pause in lock step for that long).

Now, it should be possible for the camera to send a message to
Alice, by including V4;; ., as an address inside the message (like
a virtual MAC address). When Alice’s device receives the mes-
sage, a comparison between Mj;.. and Vyj;., would indicate
that the message is meant for her. Thus, the grocery store can
now establish a communication channel with Alice, sending her
location-based product information (since the camera exactly
knows Alice’s location). Even Alice can ask questions such as
“where can I find brown rice” and the store can respond with
“ahead on your right, at the bottom shelf”. Observe that this
visual address-based communication offers privacy since Alice
need not reveal her (permanent) MAC/device IDs. Moreover,
she can turn off her motion sensors at will, terminating all
interaction with the store.

While the above applications may not be the best, they define the
design landscape reasonably well for us to build a generic visual
fingerprinting system. The most suitable applications, we hope,
will emerge in time.

3. SYSTEM OVERVIEW

This section presents a functional overview of InSight, the tech-
nical components will follow in Section 4. For preserving context,
we use the augmented reality application as the central theme in
the rest of the paper, although the techniques extend (with minor
modifications) to the other applications.

Consider a university-organized matchmaking event for star-
tups, where variety of students and faculty come with the goal of
forming teams. Upon entering, users check-in with the InSight
server and specify their rough locations. Later, say Alice looks
at an individual X through her Google Glass (or smartphone
camera) and requests to identify the individual. During the
initial bootstrap phase, the InSight server running in the cloud
asks Alice’s glass to record and upload a video snippet of that
individual. The server also requests sensor data (accelerometer,
gyroscope, and compass) from smartphones of all people around
Alice (Figure 2). Once the data arrives, the server processes these
sensor data and extracts motion fingerprints, M;, for each user i.
This motion fingerprint is essentially a feature vector, where fea-
tures include isStanding, isWalking, walking-direction,
step-duration, phase, isRotating, pause-timings, etc. The
server also analyzes the video snippet from Alice and computes
a similar motion fingerprint, but from the consecutive frames
of the video. Let V)‘(‘” ice denote this video-based motion finger-

print. By matching V}‘(‘” ice against all values of M;, InSight finds
the strongest match, say for i = Bob. If this matching score is
greater than a confidence threshold, the server conveys to Alice
that she is looking at Bob, and displays the message Bob intends
to share with others, e.g., “PhD student in CS, looking for CEO
for mobile analytics startup”.

Now, once InSightrecognizes Bob in the video snippet, it extracts
Bob'’s color fingerprint, Cpg,}, and updates a fingerprint database.
This fingerprint essentially captures color features and patterns
from Bob’s clothing. Thus, in the steady state, when everyone’s
color fingerprint is registered in the database, users no longer
need to update videos or sensor readings. If John looks at Bob
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Figure 2: Motion fingerprint based matching during initializa-
tion and for new InSightusers.

later (see Figure 3), his Glass only needs to send to the server
an image of Bob. The server extracts the color fingerprint from
John’s image, C{(Oh” and matches against all C; in the database

(the candidate set can be trimmed using John’s rough location).
Assuming C)]("h" matches best with C;_p,},, and the matching
score is above a threshold, the server informs John that he is look-
ing at Bob. Of course, these color fingerprints are valid in the
time scale of events — for another event next day, people will be
wearing different clothes, and the color database will have to be
re-populated.

John
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Ry e ~> Extract Color @ Color
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[l 0. Alice updated Bob’s color
Bob fingerprint in the past
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Figure 3: Color fingerprint matching in steady state.

We make two observations about the properties of motion and
color fingerprinting.

1. A short window of sensor data is mostly adequate to com-
pute a discriminating motion fingerprint for an individual.
This is due to the inherent diversity of human motion, i.e.,
people’s micro-motions are not likely to be synchronous
for long durations, and the first instance of “asynchrony”
can be used to tell them apart.

2. As mentioned earlier, once Alice identifies Bob using mo-
tion fingerprints, Bob’s color fingerprint, C‘Bf‘é 5 ¢» is added
to the fingerprint database (Cg,p, = Cgézce). When John



identifies Bob later, perhaps from a different angle, Bob’s

fingerprint is further refined (Cg,p, = Cgop U C{;%IZ)").

In general, people’s color fingerprints increasingly become com-
plete over time, which improves the accuracy of recognition,
which further completes the fingerprint. Thus, motion finger-
prints are only necessary to “register” a person for the first time.
Once InSight has bootstrapped, color profiles become effective,
and motion fingerprints are used only to boost matching confi-
dence, if necessary. The details on what constitutes color and
motion fingerprints are presented in Section 4.

Matching Motion Fingerprints

Motion—fingerprint matching at the InSight server is non-trivial
because the fingerprints are in different domains — Mp,, is ob-
tained from accelerometer/gyroscope/compass readings, while
V)?lic € is extracted from video frames. To bring compatibility, we
propose to translate all motion fingerprints into a common se-
mantic alphabet, where example alphabets are “walking north”,
“rotating”, “pausing” (see example alphabets in Table 1). Thus,
both Mp,, and V)‘?l ice are represented as strings on this alpha-
bet, and fingerprint matching boils down to string matching. As
an example, say Bob and Neil walk northward for 3 time units,
and then Bob pauses while Neil continues walking for one more
unit, and then Neil pauses too. Their respective strings will then
be Mpo,p, = NNNOO... and Mp,;; = NNNNO..., and it would be
possible to tell them apart at the fourth time unit. Specifically,
if Alice is looking at Bob, then InSight will compute V)?lice =
NNNOO..., which is expected to match better with Mp,;,. In our
actual implementation, the motion alphabet is far more sophis-
ticated, including different directions of walking, duration and
phase of walking steps, rotations, etc. In fact, for the above case,
InSightwill analyze the duration and phase of walking steps, and
unless Bob and Neil are well synchronized in their footsteps, they
will be separated within 4 time units.

Table 1: A few examples of motion alphabet. InSightuses much
more fine grained alphabets.

stationary, paused
walking north
walking south
walking east

waling west

rotating
undetermined motion

SRR X

4. SYSTEM DESIGN

This section describes the extraction of motion and color fin-
gerprints from sensor and video data, followed by fingerprint
matching schemes. The techniques borrow from literature where
suitable, with appropriate adaptions to this specific cross-sensor
application.

4.1 Extracting motion from sensor data

We begin with a description of how sensor readings from Bob’s
smartphone are translated into a motion string. The key motion
alphabets that make up this string are derived from: (1) rotation,
(2) walking, (3) walking step duration, (4) walking step phase, and
(5) walking direction.

* Rotation Detection: Since the phone can be in an unknown
orientation, we cannot rely on any single axis of the gyro-

scope (X, y, or z) to properly detect rotation. Therefore, we
first project the rotation rate vector r = (ry, 'y, z) on to gravity
vector g = (gx, 8y, §2) in the phone’s coordinate system, i.e.,

Tgravity = (Tx8x + Ty8y + 1282)/y /g)zc + g% + g%. Then, the rota-
tion angle around gravity is agrqpiry = S Tgravitydt.- I dgrapiry

exceeds a certain threshold, the user’s motion is labeled as ro-
tating (denoted by R in the motion alphabet). The alphabet R
is essentially a binary indicator and its natural to ask: why not
extract more bits of information from rotation? This is because
detecting various degrees of human rotation from videos is a
difficult problem.

» Walking Detection: The act of human walking manifests on the
accelerometer with periodic high/low impulses as well as some
rotation around the gravity axis. However, due to movements of
the phone inside the pocket, and certain unusual gait patterns,
simple threshold based schemes were inadequate to recognize
walking patterns. Instead, we employ a bagged decision tree
model and train it with two features, namely (1) standard de-
viation on the magnitude of accelerometers, and (2) rotation
around gravity. We omit details in the interest of space, but
found this to offer high consistency (as evident in Section 5.1).

+ Walking Step Duration: Given that people walk with varying
speeds, the duration of walking steps can be a useful discrimi-
nator. To this end, we first detect if the user is walking; if so, we
apply a standard Kalman filter on the accelerometer data to first
smooth out the reading and accurately identify the local max-
ima. These local peaks — shown in Figure 4 — are actually the
time points when the human feet land on the ground. The peaks
closer to the taller raw impulses correspond to the leg that carries
the phone. The step duration, denoted Tzep, may be computed
as half of the time window between two consecutive peaks. Note
that Tszep can be computed without prior knowledge of which
pocket the phone is in. Even if the phone is in the shirt pocket, or
held in the hand, such peaks are visible, and Tsep can be com-
puted. We have not evaluated the case of backpacks and jacket
pockets.

Raw magnitude reading
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Figure 4: Walking: magnitude of accelerometer readings
(smoothed) with step marker while user is walking.

» Walking Phase: Even when two users are walking at the same
speed, i.e., Tsrep is identical, their exact step timings may be out
of phase. Thus, the phase of walking can also be a component
of the motion fingerprint of a person. To this end, we use the
peak around the bigger jerk as the step phase marker, shown in
Figure 4. If different users exhibit these peaks at different times,
they may be separated so long as time is appropriately synchro-
nized among devices. If the accuracy of synchronization is upper
bounded by, say J, then the phase differences can be measured
in that granularity. We show later that our synchronization is in



tep

the order of , permitting us to create 3 buckets of users with
respect to thelr walking phases.

o Walking direction: InSight intends to leverage the user’s
walking direction, with some granularity, as an attribute of her
motion. However, walking direction estimation is challenging
given that the phone is in an unknown orientation on the user’s
body. The problem is difficult because the act of walking imposes
various kinds of vertical, horizontal, and sideward forces on the
smartphone (to stabilize the body), and there is a narrow window
during which the acceleration on the phone is most dominantly
along the user’s heading direction. This narrow time window is
actually when the user’s leg swings (or rotates) forward, captured
by the cross product of rotation axis, Z,,;s and gravity g. More
precisely, the user’s heading vector, H = % ,,i¢ % &, illustrated in
Figure 5. Given the rotation matrix % from gyroscope, 2 ;s is

the null space of (2 — I) (I is the identity matrix) and rotation

trace(Z) —1

angle Zg = arccos( ). In our system, we make %y

always positive and the sign of Z; is determined by the right-
hand rule. When the leg carrying the phone (called the primary
leg) swings, the 2,5 x g points to user’s heading direction; the
same cross product points in the opposite direction when the
secondary leg swings.

N

R axis

Figure 5: Heading vector = cross product of rotation axis and
gravity.

Importantly, this cross product must be computed when the
leg is in full swing, otherwise, the sensor data can be polluted
with noise (especially when the leg slows down and strikes
the ground). To avoid such noise, InSight chooses a period of
30% of Tssep starting from the time when the secondary leg
strikes the ground (i.e., when the primary leg is about to swing).
R axis is derived from this time window. Figure 6(b) shows the
H(1) = R xis(1) x g(t), where % 45 (2) is the rotation axis during
[£,t+30%Tstepl. Clearly, H() alternates its direction as the user
swings its primary and secondary legs alternately.

The heading vector is in the phone’s coordinate system and
needs to be interpreted in the global magnetic reference frame
(i.e., with respect to North). For this, we project the magnetome-
ter reading to the horizontal plane [32], and record the angle
between this projected vector and the heading vector. Figure 6
shows the results. Vertical dotted lines are the moments when
the heading vector is recorded. As expected, heading direction
alternates roughly 180° between primary and secondary steps.
At the moments of heading vector recordings, the direction
matches the ground truth as it corresponds to the window when
the primary leg swings. Upon close scrutiny, we find that the
estimated walking directions are always slightly higher than
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Figure 6: Walking direction: (top) Magnitude of acceleration
while user is walking. (middle) Heading direction. Dotted lines
are the moments when heading vector is calculated; (bottom)
Estimated walking direction (ground truth of 0° in red). As ex-
pected, they match at the primary steps and differ by 180° at
the secondary steps (with heading direction opposite of the pri-

mary).

the ground truth. This is because human leg motions are often
slightly diagonal, and the actual walking direction is an average
of two diagonals from two steps, resulting in forward locomo-
tion. We use a calibration factor of 35° to compensate for this
effect. The final walking direction is divided into 8 directions,
in the granularity of 45°, which creates 8 motion alphabets. The
following subsection describes how the same motion alphabets
are also derived from videos (of Bob) captured from (Alice’s)
Google Glass camera.

4.2 Extracting motion from video

Given that a video can contain multiple moving individuals, In-
Sight's first step is to mark and track every person in the video.
This calls for enveloping each individual with a bounding box.
Of course, for motion related insights (such as walking period,
phase, etc.) lower regions of the bounding box needs to be pro-
cessed to extract alphabets. This section describes each of these
steps systematically.

o Detection and Tracking: To detect and track humans in
the video, we borrow existing techniques from computer vi-
sion [11, 12] and modify it per InSights needs. Using the bor-
rowed techniques, Figures 7 (a)-(e) show the accuracy of placing
a bounding box around each person, along with a confidence
score. To cope with false positives, we only consider the boxes
with a confidence score above 50. Now, to track people across
the video frames, we again employ a Kalman filter [19]. Formally,
the state of each rracker is denoted by si = [xg, yi, Vxp Uy, ]
where {xi, yx} and {vx, vy} are the position and speed of the
person in the 2D frame k. Observation z is the center of the
bounding box obtained from the pedestrian detector. We use the
following state and observation equations.

Sg+1 = Fsp +wpe 1)
zk:Hsk+uk 2)
where
1 0 dt O
01 0 dt 1 0 0 O
F= 0 0 1 0 H_( 01 0 O )
0 0 O 1

dt in F is the duration between adjacent frames. wy ~ N(0,Qy)
and uy ~ N(0, Ry) are state model noise and measurement noise



Figure 7: Pedestrian detection and tracking: (a)~(e) are with pedestrian detection; (f)~(j) are with tracking. (b) shows a temporal
miss. (c) shows a temporally wrong detection. (d) shows a miss caused by occlusion. As we can see from (f) ~ (j), these errors are
fixed by tracking. (f) ~ (j) also show people can be tracked properly after temporal encounters.

respectively. Q. and Ry are proportional to the person’s size. Qj
is also inversely proportional to the number of tracked frames.

When processing a new video frame, we employ the method
in [8] to associate each bounding box with a tracker. In the
association process, we leverage the observation that position,
direction of speed, and size, are not likely to change significantly
in adjacent frames; in fact, the higher the speed of the user,
the larger the chance that the direction of speed remains the
same. Thus, after association, each target’s Kalman filter goes
one iteration further. Unlike [8], where a single particle filter is
used to track the center of the target, we enrich each tracker with
four corners of the bounding box. Each corner is also passed
through a Kalman filter as described above. The bounding box
thus filtered is later utilized for estimating walking direction and
step phase detection.

Figures 7(a)-(e) show the results from pedestrian detection.
Although reasonable, it fails to detect a person in Figure 7(b),
falsely detects one in Figure 7(c), and suffers from occlusion
in Figure 7(d). However, Figures 7(f)-(j) show the efficacy of
applying tracking. Also, Figures 7(f) and 7(j) show that people
can be tracked properly even after temporal encounters.

« IsWalking and Walking Direction: To detect whether the target
person is walking, we use the speed of the bounding box. Since
speed is one of the states in the Kalman filter, we obtain it from
the tracking process described earlier. Figure 8 shows 2D speed
of the center of the bounding box — higher speeds denoted with a
longer arrow. People in Figures 8(a)-(e) are walking and the per-
son in Figure 8(f) is standing in place. If a person’s movement has
significant speed, then we can detect walking by the mean of 2D
speed, sxy, normalized by that person’s height, during a prede-
fined period as given by Equation 3.

1 o ED?+(eh)?
Sxy=— ), —————— 3
YL ieP ht
where P is a collection of frames in the period; Lp is the cardinal-
ity of P; ¢ and ch, are the horizontal and vertical components of
the target’s center speed at frame i; and hiisthe target’s height at
frame i. However, if the person is walking mainly along the line
perpendicular to the camera’s plane (Figures 8(d) and (e)), sxy

can be as small as the case where the person is just standing. To
cope with this scenario, we use a term s, to estimate the target’s
motion along the z axis.

htr — !

“ meanih':ie P}

Sz=a (4)
where a. is a calibration factor such that |s;| and sy are roughly
similar if the target’s speed is the same whether moving in 2D
plane or along the z axis. When the combined value of sxy +|s|
of a target is above a certain threshold, we mark that person as
walking.

We calculate the user’s walking direction with respect to the
camera’s facing direction. The relative direction is quantized
to 8 bins with centers at 0°, 45°, 90°,...,, 315°. To classify the
direction, we train a model with bagged decision tree with fea-
tures sy (Equation 5), sz, and dz, where d is the slope of linear
regression of heights. Intuitively, the bounding box’s speed and
increase/decrease of its height together help in determining the
user’s relative direction.

i
Ly

=— - (5)
Lp jep I

Sx

« Step Duration and Phase: To detect the duration and phase of
walking steps, we choose the lower region of the bounding box
obtained from the tracker. We represent the motion in this re-
gion through Space-Time Interest Points, which essentially cap-
tures fast changes in video pixels. This technique is borrowed
from [13] and we omit the details in the interest of space. As
an abstraction, the technique marks the fast-changing spots on
the video (Figures 9(a)-(c)) with brighter spots indicating faster
movements. Clearly, the distribution of spots and their bright-
ness vary while the user is walking. We define a feature, Fcepger,
which captures the rhythm of this alteration. Figure 9(d) shows a
typical path of Fcenter — the peaks are essentially the step phase,
while the time separation between the peaks is the step duration.
The technique becomes unreliable when the user is walking to-
wards or away from the camera, in which case, we refrain from
extracting step duration and phase.

* Rotation: The technique of Space-Time Interest points can be
applied for detecting rotation as well. The key observation is that



Figure 8: Center speed in 2D plane: (a)-(c) have significant
speed, and (d)-(f) have insignificant speed.

rotation causes fast changing spots to be scattered over the en-
tire bounding box, while other activities cause the spots to be
confined to a relatively smaller region. Figure 10 shows an ex-
ample where the spots are confined to the hands when the user
is moving them; in contrast, rotation causes the spots to cover
the entire body. Formally, we define X = {x;} and Y = {y;},(i =
1,2,..,N) as the X and Y coordinates of the centroid of the spots.
We define the following four features - fi = max{X} - min{X},
fo =max{Y}—min{Y}, f3 =var{X}, and f = var{Y}-and train
a bagged decision tree to classify the spot distribution. The out-
put is a binary answer: rotation or not.

o Unknown: InSight extracts a motion alphabet from each time
unit (one second). However, confusions arise when the user tran-
sitions from one action to another within that second (e.g., sta-
tionary user starts walking). We conservatively deem these time
units as an “unknown”. The motion string thus contains motion
alphabets and unknowns interspersed with each other.

4.3 Matching Motion Strings

We now describe how motion strings obtained from sensors are
matched with motion strings extracted from videos. First, since
the walking direction estimated from sensors is with respect to
global north, we map it to one of the 8 quantized directions rela-
tive to our camera-facing direction. Then, InSight computes the
“distance” between the two strings, similar in spirit to edit dis-
tance.

Specifically, denote the motion strings based on the video and
sensor data as V and M respectively, and their length L (note that
the string lengths are same). For each position i in the strings,
we compare V(i) and M(i). The difference between them is 0
only if: (1) V(i) and M(i) are identical or (2) V(i) and M(i) both
correspond to walking in identical or adjacent directions, their
step durations are within a threshold ratio, and their step phase
marker of M(i) falls into a range calculated from step phase mak-
ers of V(i). Otherwise, their difference is recorded as 1. Let D be
the total difference across the length of the strings. Then we de-

D
fine string similarity as (1— f)' When comparing a video string of
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Figure 9: Walking phase and duration: (a)~(c) Centers of de-
tected cuboids; (d) Walking phase feature changes over time
and detected steps. Points A, B and C in (d) correspond to the
instances in (a), (b) and (c) respectively.

a person X against multiple people’s sensor strings, we pick the
one (say Bob’s) with the single highest similarity (if any). Only if
this highest similarity is above a certain threshold, then X is iden-
tified as Bob, otherwise we declare the recognition as “unsure”.

4.4 Extracting color fingerprint

Once Bob is identified based on his motion, the server extracts
and adds his color fingerprint to its repository. Thereafter, server
may be able to recognize Bob from an image without seeking
video and sensor data, saving both latency and bandwidth. While
various visual features of Bob can be considered to form his color
fingerprint, clothing is an obvious choice as a temporary finger-
print. Therefore, in this paper, we extract the features of Bob’s
clothing and use them as Bob’s color fingerprint. As a first step
in getting the fingerprint, we detect the clothing area in the per-

Figure 10: Scattering of motion spots: (a) rubbing hands, (b)
putting hands into pocket, (c) rotating



son’s image. Then, we use a well known technique, namely spa-
tiograms, to extract a color fingerprint.

Clothing area detection: We extract color fingerprints when tar-
get is in near-front or near-back view. Calvin Upper-body De-
tector [14] model is trained to return bounding-boxes fitting the
head and upper half of the torso. Figures 11(a) and 11(b) show
the detected upper-body; Figure 11(c) shows that the detector
doesn't fire in other views. We then use a pose estimation model
[33] trained on Buffy dataset [15], which returns with joints such
as neck, shoulder, etc. The neck and shoulder joints (red lines
in Figure 11) help crop the upper-torso area as the clothing area.
Then, we apply spatiograms on the cropped image to extract the
target’s color fingerprint.

Figure 11: View detection and shoulder estimation. Green
dashed boxes show the detected upper-body. The upper-body
detector can detect upper-bodies in either near-front view (a)
or near-back view (b), but it cannot detect upper-bodies in
other views (c). Red solid lines are shoulder extracted by pose
estimation.

Spatiograms: Spatiograms are essentially color histograms with
spatial distributions encoded in its structure. Put differently,
while basic color histograms only capture the relative frequency
of each color, spatiograms capture how these colors are dis-
tributed in 2D space. The second order of spatiogram can be
represented as [5]:

hi(b) =< np,pp,0p>, b=1,2,3,---,B,

where B is the number of color bins, n;, is the number of pix-
els whose value falls in the b*" bin, and p p and o, are the mean
vector and covariance matrices of the coordinates of those pix-
els respectively. Through such a representation, a white over red
stripe can be distinguished from a red over white stripe, even if
the number of red and white pixels are identical in both. Also, to
cope with various viewing distances, we normalize the spatial in-
formation with respect to the shoulder width so that all the spa-
tial representation is relative to the captured body size in each
photo. Finally, to decouple lighting conditions from the colors,
we convert the pixels from RGB to HSV, and quantize them into
B =5x1x2 bins.

4.5 Color Fingerprint Matching

When John views Bob through his glass — either from the front
or the back - InSight again crops out a region around Bob’s up-
per body, and applies the same fingerprinting operations on this
image. These fingerprints — one in the repository and another
from John - are now ready for matching. Our matching algorithm
first computes the spatiogram similarity between each person in
John’s view with Bob’s fingerprint in the repository. Denote the
spatiograms to be compared as S = {n, 1,0} and S = {n’,p’,ar},
both having B color bins. We define the similarity measure as
in [9]:

B U ! !
— ! /4 .
o= +/npn, 8mIZpZ, VAN (upi 1y, 2(Zp +2,))
= b b b b

Essentially, the similarity decreases (following a Gaussian func-
tion) with increasing difference between the colors and their spa-
tial locations. Fingerprints are considered to match if p is greater
than a certain threshold.

When motion information (video and sensor data) is available
in addition to clothing fingerprints, InSight server utilizes them
both to make the recognition more robust. First, it computes
the p value for each video frame that captures target’s near-front
or near-back view, and calculates the mean p. It deems clothing
similarity as 1, if p is above a certain threshold and 0 otherwise.
Next, it will compute the overall similarity as the average of mo-
tion similarity and color similarity. Then, it will pick a person
with the single highest overall similarity. If this person’s overall
similarity is above a certain threshold, then InSight returns the
person’s name, and unsure otherwise.

S. EVALUATION

This section is organized in 3 parts: (1) Micro-benchmarks
to evaluate the accuracy with which motion alphabets can be
detected from each second of video and sensor data. (2) Sce-
nario with real users to evaluate InSight's ability to discriminate
individuals through motion/visual fingerprint comparison. (3)
Video simulation to evaluate scalability across large number of
users. The experiment design and details are presented under
each of the 3 sub-sections.

5.1 Micro-benchmark (for Motion Alphabets)
Experiment Design:

Motion alphabets define the atomic operation in InSight — this
section evaluates whether each second in videos and sensor
data can be reliably converted to motion alphabets. For this, we
recruited 12 volunteers, gave each of them a Samsung Android
phone running an InSight client, and asked each of them to
cover various actions, such as walking, rotations, taking turns,
standing still, etc., as well as some upper body movements like
checking emails, stretching, etc in an area of 20mx15m out-
side our building. During the entire experiment, a designated
observer video recorded each volunteer’s motion patterns sep-
arately. The experiment was performed in 4 sessions and in
total 80 minutes of sensor and video data were collected (and
each frame manually labeled for ground truth). These videos
were then examined frame by frame and manually labeled with
ground truth (i.e., each second of the video tagged with one of
the motion alphabets, such as walking or not, walking direction,
starting and ending frame of each step, rotating or not, etc.).

Results

Walking detection: We use a 3-fold cross-validation to evaluate
the accuracy of walk-detection. Recall that walking detection
with sensors is based on bagged decision trees, while for videos,
we used a calibration factor @, and a motion threshold. We
set az = 4 and motion threshold of 0.5. Figure 12 shows the
confusion matrix — evidently, the detector is highly accurate for
both sensors and videos, with mis-detection not above 0.6% and
1.5% respectively.

Step duration: We painstakingly computed the ground truth for
step duration, i.e., the start and end time of each step. This en-
ables comparison with estimates made from video and sensor



No Yes No Yes

No | 99.9% | 0.1% | No [ 98.9% [ 1.1%

Yes [ 0.6% [ 99.4% | Yes | 1.5% | 98.5%

Figure 12: Detecting walking vs. not-walking: (a) from sensors;
(b) from vision.

data. Figure 13 plots the CDF of the relative error for both di-
mensions of information. The error distribution with videos ex-
hibits a staircase function since the ground truth was marked in
the units of video frames. Overall, the relative error is less than
8% in more than 85% instances for both video and sensor data.
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Figure 13: Step duration estimation error compared to ground

truth.
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Walking direction: Using sensor data, we compute the walking
direction w.r.t. global north and plot the relative error in Fig-
ure 14. Evidently, the error is not high and confined mostly to
+45° around the true value. We also estimate the walking direc-
tion from the videos and classify them into one of 8 classes — Fig-
ure 15 reports the confusion matrix. Classification accuracy (at
45° granularity) is consistently high, and the slight confusion is
mostly with adjacent angular directions.
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Figure 14: Walking direction estimation: relative error with
Sensors.

Step Phase: Recall that step phase of two individuals is the differ-
ence between the time points at which their respective feet strike
the ground. Figure 16(a) shows the histogram of the difference in
the phase (normalized by Ts;ep), estimated from the sensor data

0 45 90 135 180 225 270 315

0 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
45 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
90 1.7% ] 0.0% | 0.0% | 0.0% | 0.0%

135 ] 0.0% | 0.0% 1.0% | 0.0% | 0.0% | 0.0%

180 | 0.0%] 0.0% | 0.0% 0.0% ] 0.0% | 0.0%

0.4%

225 1 0.0%] 0.0% | 0.0% | 0.0%

270 ] 0.0%] 0.0% | 0.0% | 0.0% | 0.0%

315 ]0.5%] 0.0% | 0.0% | 0.0% | 0.0%

Figure 15: Walking direction estimation: confusion matrix for
quantized directions based on video.

and compared against ground truth. Figure 16(b) shows the same
histogram but computed from video data. However, for recogniz-
ing individuals in InSight, what matters is the video-sensor phase
offset (i.e., the difference in phase computed between video and
sensor data). Figure 16(c) shows this difference. The graph sug-
gests that the resolution at which step phases can be discrimi-
nated is around 0.3 x Tszep (Tsrep is the step duration) — two in-
dividuals that are different by less than this value will appear to
be in lock-step.

Rotation: Recall that, rotation is detected from videos by training
a bagged decision tree and classifying the identified spot distri-
bution (Figure 10). For extracting rotation from sensor data, we
compute the rotation angle around gravity, agqy;ry, and apply
a threshold of 15°. Figure 17 reports the a confusion matrix — the
high accuracy confirms reliable rotation detection.

No Yes No Yes

No | 97.8% | 2.2% | No | 98.9% | 1.1%

Yes [ 1.3% [ 98.7% | Yes | 1.2% | 98.8%

Figure 17: Rotating or not: (a) by sensors; (b) by vision.

5.2 Real User Scenario

The above evaluation shows the consistent accuracy of detecting
motion alphabets from both video and sensor data. This sub-
section extracts motion strings from individuals and examines
the discriminative abilities in them. The overall performance de-
pends on 2 factors: (1) the inherent diversity in human motion
patterns, and (2) effectiveness of InSight's fingerprint design and
matching schemes.

Experiment Design

We again conduct experiments with the help of the same 12
volunteers as before. But, unlike the micro-benchmark setting,
in this set of experiments, the volunteers’ motion and behavior
were completely natural. They were allowed to naturally move
around or pause, and do as they pleased. They were also not
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Figure 16: Step phase marker distribution: (a) sensor phase markers with respect to ground truth; (b) video phase markers with
respect to ground truth; (c) sensor phase markers with respect to video phase markers.

instructed about clothing - they came to the experiment wearing
the same clothes that they wore to school that morning.

We have not developed a real-time version of InSight — our cur-
rent evaluation is offline and structured as follows. We pretend
that the observer requests to recognize one of the volunteers at a
random time ¢. Starting at time ¢ in our data set, we crop out a
10 second video of that volunteer, as well as a 10 second sensor
stream from all 12 smartphones. A motion string derived from
this video is then matched against all the motion strings derived
from the sensors. The string matching algorithm either returns
a matching smartphone (or volunteer), or returns unsure if there
is no single highest score or the score is below a threshold (set to
0.95). We repeat this experiment 100 times with different request
times.

Results

Figure 18 shows the recognition accuracy. To understand the
contribution of different motion alphabets towards overall
human recognition, we evaluate various combinations of alpha-
bets. Figure 18(a) starts with the simplest one — walking or not.
In other words, for each second of the video and sensor data,
a volunteer’s motion is categorized as walking or not walking.
Then, for increasing string lengths, we plot the performance of
the matching scheme. For increasing time durations (on the
x-axis), we show the fraction of people correctly recognized,
incorrectly recognized, and unsure. For instance, from the first
7 seconds of video and sensor data, we could correctly recog-
nize 2% of the cases and the rest were unsure (none incorrectly
recognized). As we consider longer durations of motion, recog-
nition performance improves, reaching 7% with 10 seconds of
motion. This improvement is expected since motion of two in-
dividuals diverges over time making them more distinguishable.
Of course, the distinguishability is not high in this case, since
walking alone, is hardly a strong discriminator.

To improve over a binary walking indicator, we include walk-
ing direction in the motion alphabet (quantized to 8 classes) and
present its performance in Figure 18(b). Understandably, walk-
ing direction helps improve the recognition, up to 30%. Simi-
larly, Figure 18(c) and Figure 18(d) indicate that considering step
phase and duration together along with walking direction can
recognize individuals correctly in 50% of the cases. Figure 18(e)
shows that when rotating or not is further added to the alphabet
(in addition to walking direction/phase/duration), a person can
be recognized in close to 72% cases with 10 seconds of observa-
tions.

Finally, clothing fingerprints can also be used in combina-
tion with motion based alphabets for recognizing humans.
Figure 18(f) shows that when clothing fingerprint is used in
conjunction with motion, 6 seconds of observation are sufficient
to recognize a person with 90% probability. Overall, these results
demonstrate that motion and clothing together help recognize
individuals accurately, and recognition performance improves
over time.

5.3 Video Simulation (for Scale)

Experiment Design

Recruiting large number of volunteers and bringing them for
multiple social experiments proved more difficult than we imag-
ined. Still, to gain insights on InSight’s scalability to higher user
density and different settings, we resort to an approximation.
Our key idea is to record video of people in public places, and
even though we do not have sensor data from them, we will
synthesize sensor data by injecting statistical error into ground
truth observations. For this we execute the following steps:

« record videos of people in public places, such as university
cafes, grocery stores, busy street intersections.

extract the video-based motion fingerprints for each user in
the video, denoted V;,

o also manually extract ground truth for each user from the
video, denoted T3,

« inject errors into the ground truth based on past error distribu-
tions, observed when extracting motion alphabets from sen-
sors (i.e.,, M; = T; + Error),

compare the video based motion strings to the synthetic sen-
sor based strings (i.e., Vx == M;?).

Our earlier evaluation in Section 5.1 demonstrated that sensor
based strings achieve high accuracy, so this synthetic sensor
strings should well mimmic reality. The results should be a
faithful approximation of InSight's performance at scale.

The motion alphabets are synthesized as follows. To determine
whether a person is walking or not, we use the confusion matrix
shown in Figure 12(a). Specifically, if a person is walking as per
the ground truth, then she is marked as walking with 99.4% prob-
ability and as not-walking with 0.6% probability; when she is not
walking, her motion is marked as walking and not-walking with
0.1% and 99.9% probability respectively. We follow the same for
deciding rotating or not, using the rotation confusion matrix in
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Figure 18: Recognition performance with motion alphabets and color fingerprints: (a) Walking or not only; (b) Walking direction
only; (c) Walking direction with walking phase; (d) Walking direction with step phase and duration; (e) All motion alphabets includ-
ing rotation; (f) All motion alphabets along with color fingerprints.

Figure 17(a). To obtain the step duration, we add a random error
to the ground truth, following the distribution in Figure 13. For
step direction, we do the same using the distribution from Fig-
ure 14. For determining the step phase, we add a random shift
according to the step phase distribution in Figure 16 (a). The
random shift varies from —9.1% of Tszep to 25.3% of Tszep. Now,
since the error distributions were from a 12 member evaluation,
the variance is likely to be smaller compared to a larger popula-
tion. To account for such situations, we added additional errors
to ensure the data is not optimistic.

The public videos were recorded under 3 different scenarios —
near a busy area outside the student union during summer (re-
ferred to as the “union” video later), at the CS department cafe
in the winter (referred to as “cafe” video) and at the entrance of a
Target store in the winter (referred as “store” video). Figure 19
show example video frames. People moved in and out of the
videos - so at any typical time instant, we observed between 3
to 10 in the view finder. However, for each of the videos, we com-
puted motion fingerprints of all the people across time, and then
compare against each other. For instance, the union video in-
cluded 40 distinct individuals in 5 minutes, and we pretend as
if all the 40 people were present at the same time. InSightis ex-
pected to be able to discriminate each individual accurately from
these 40 individuals. The cafe and store had 15 people each due
to less churn.

Results

Figure 20 reports results from the “union” video simulations. As
a high level summary, InSight was able to recognize most of the
user by combining motion and clothing. Specifically, since the
recording was in summer, people wore colorful clothing, which
by itself achieved 50% accuracy among 40 people. Expectedly,
motion aided this discrimination, however, given that many
users walked often, walking-or-not was not a major discrimi-
nator. Walking direction and step duration were helpful, but

still not sufficient due to the high density of users (users mostly
walked in two dominant direction, one towards the restaurants,
and another towards dorms). However, when including walking
phase, results improved significantly.

We zoom into the results here. Figure 20(a) shows the clothing
confusion matrix across 40 people. Figures 20(b) and (c) plot the
recognition performance over time, using motion alone followed
by motion+clothing. Figure 20(d) shows the confusion matrix af-
ter combining motion and clothing and the similarity threshold
set to 0.95. Using clothing alone, InSight recognizes 50% of indi-
viduals. Using motion alone, InSight recognizes 40% of individu-
als within 10 seconds; with combination of clothing and motion,
the recognition performance rises up to 88% within 5 seconds
and 90% within 8 seconds.

Figure 21 and 22 report on the results from the “cafe” and “store”
video simulations. Since both scenarios were recorded in winter,
a majority of the people were wearing dark shades (dominantly
black and gray). Thus, in both cases, clothing offered fewer bits
of information. However, motion compensated well, especially
in the cafe where people walked, paused, turned, etc. With com-
bined clothing and motion, InSight achieves 80% accuracy in 6
seconds, 93% in 8 seconds at the cafe, and 87% in 5 seconds, 93%
in 10 seconds at the store.

The results above suggest that humans inherently exhibit di-
versity in their motion and clothing patterns that even low
resolution feature vectors offer promise of identification. Where
faces are permanent and high entropy fingerprints, these mo-
tion strings could serve as a useful alternative, when temporary
“visual identification” is of interest, without revealing persistent
identities.

6. POINTS OF DISCUSSION

We discuss a number of limitations and untapped opportunities
with InSight.



Figure 19: Example frames from (a) outside student union, (b) university cafe and (c) Target store.
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Figure 20: Union video Performance: (a) clothing only confusion matrix; Recognition over time using (b) motion only (c) motion +
clothing (d) motion + clothing confusion matrix (after applying a threshold of 0.95 on similarity score).

Coping with Practical Hurdles. While we believe InSight is
amenable to deployment in the real-world, it needs to be engi-
neered, tested, and fine-tuned for various practical scenarios.
Occlusions is perhaps the key limitation at this point. In a
crowded environment, an individual is likely to be occluded by
others, preventing the computer vision algorithm from carving
out a precise bounding box for each person. This can inject
confusion in the system, especially if the bounding boxes er-
roneously include different parts of two or more individuals.
Coping with these complications is left to future work. Also,
low lighting intensity in certain environments may affect visual
clarity and fingerprinting. Further, people may change clothing
— put on a scarf or take off their jackets — after their fingerprints
have been registered in the database. Of course, motion fin-
gerprints are a dependable fallback to cope with some of these
situations, however, their efficacy in the wild remains to be seen.

Real Time Operation. In its current form, InSight is an offline
system. Running this online will require substantial “heavy lift-
ing” likely to be executed in the cloud [10] or cloudlets [27]. This
paper’s focus is towards demonstrating the core opportunity —
the necessary engineering for an end to end system will depend
on the application in question, and is a separate work altogether.
Innovative research is yielding intelligent cloud-offloading tech-
niques [10,27], designed explicitly for applications like InSight. In
view of this, we believe real-time operation will be feasible over
time, perhaps requiring porting InSight on MAUI-like program-
ming frameworks [10].

Energy. The energy footprint of InSight may not be excessive.
Motion sensors on smartphones need not consume much energy
even after prolonged continuous sensing. The camera on the
other hand can be activated only when the user desires to view
annotations of the environment (e.g., when Alice wants to learn
who a particular person is). This is true even for other applica-
tions such as privacy preserving pictures — the camera is again
used only during the recording of a video or for taking a picture.

Incremental Deployment. If some users do not run InSight on
their phones, the fingerprint matching process faces additional

challenges. For instance, Alice may be looking at Bob in real-
ity, and even though Bob is not running InSight, Bob’s clothing
fingerprint may match best with Chris (a registered user). To
avoid such errors, InSight requires that the fingerprint matching
threshold be very high, with the hope that motion-based match-
ing would be triggered. Nonetheless, certain scenarios (such as
weddings, funerals, uniformed school children) may still derail
InSight. Perhaps an adaptive process is needed, where the In-
Sight server identifies large similarities in clothing patterns and
triggers motion based matching more aggressively.

Utilizing all bits of information. Upon receiving a video clip, In-
Sight can extract clothing fingerprints for multiple people even if
itis unable to map them to their identities. Over time, the repos-
itory of unnamed clothing fingerprints increase. Now, as individ-
uals get identified through motion, it may be possible to resolve
some of the other clothing fingerprints via the process of elim-
ination. We envisage that such a form of inferencing would be
possible due to the global view on the fingerprint data, available
at the InSight server. We have not tapped this opportunity in this

paper.

Peer-to-peer version of InSight. While we describe InSight as a
cloud-based system, it is also possible to realize it over a peer-
to-peer model. The sequence of operations, somewhat different
from Figure 2, can be as follows. (1) Alice’s glass takes a picture of
X and broadcasts it, asking “who is the person in the picture”; si-
multaneously it starts recoding a video snippet. (2) Smartphones
in the vicinity receive the image (over Bluetooth or WiFi Direct),
extract the color fingerprint, and match it with their self color
fingerprint (if they have one); simultaneously each of them ac-
tivate their motion sensors. (3) These smartphones send their
color fingerprint matching score along with their sensor data to
Alice’s glass. (4) Alice’s phone computes the motion matching
score, combines with the color score, and ultimately identifies
X as Bob. (5) Alice’s glass extracts Bob’s color fingerprint from
the video snippet and unicasts it to Bob’s smartphone, which up-
dates its own fingerprint. Of course, such a system assumes that
smartphones are capable of executing the compute-heavy algo-
rithms locally, perhaps difficult in today’s platforms.
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Figure 21: Cafe video simulation: (a) clothing only confusion matrix; Recognition over time using (b) motion only (c) motion +
clothing (d) motion + clothing confusion matrix (after applying a threshold of 0.95 on similarity score).
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Figure 22: Store video simulation: (a) clothing only confusion matrix; Recognition over time using (b) motion only (c) motion +
clothing (d) motion + clothing confusion matrix (after applying a threshold of 0.95 on similarity score).

7. RELATED WORK

There exist several works on activity recognition based on
video [13, 26] and sensors [4]. TagSense [23] uses motion as
an indication of whether a person is in the picture, but does
not need to actually identify each individual. Face recognition
and other visual bio-metrics are of course possible alterna-
tives [16, 18, 34], but need the face to be visible (in addition to
practical concerns on revealing a permanent identifier). InSight,
on the other hand, temporarily fingerprints individuals, expos-
ing only soft-biometrics of the user that cannot identify them
later. We observe that InSight is different from gait analysis [16],
used to “fingerprint” individuals. While gait analysis zooms into
the intricacies of walking patterns (i.e., how one walks), we use
far higher level motion alphabets capturing duration of walks,
turns, pauses (none of which is permanent).

The specific applications we have discussed have received
research attention in the recent past [3, 17, 20, 22, 25, 28]. Re-
searchers have explored the possibility of looking at objects in
a store, using wearable devices and radio-optical beacons [3]
and/or RFID based techniques [28]. Such modes of communica-
tion are innovative and complementary to InSight. Qualcomm
Vuforia [1] is a commercial Mobile AR SDK for object recognition
and 3D object tracking. Videoguide [2] is a Vuforia app used
to animate architecture work in Barcelona museum. Contrary
to Vuforia which requires deployment in advance, InSight is a
training-free system intended for humans.

Privacy preservation in the age of wearable cameras is also wit-
nessing considerable research attention. Authors in [6] suggest a
QR code pasted on people’s clothing, as an expression of privacy
preferences to surrounding cameras. Of course, the QR code may
not necessarily be in view of the camera; reading from longer
ranges is difficult; with human motion, reading QR codes is hard.
PrivateEye [24] proposes to avoid recording objects by drawing a
signature shape around it. InSight, on the other hand, does not
require any form of instrumentation, except that the smartphone

should run the app. Natural behavior of humans should exhibit
adequate diversity for recognition, in turn useful for for inclu-
sion, exclusion, or communication.

Our workshop paper on InSight [31] was an initial exploration
into the possibility of using clothing colors as a temporary vi-
sual identifier. This paper builds on the workshop version in
multiple fronts, including (1) the significant addition of motion
information to the notion of visual fingerprinting, (2) a range of
techniques to correlate motion from vision and device sensors,
(3) the idea of expressing fingerprints as activity-strings and ap-
plying string matching algorithms on them, (4) a more complete
evaluation through micro-benchmarks and offline evaluation,
and finally (5) isolating the notion of visual fingerprinting and
discussing its various applications in augmented reality, privacy
preserving pictures, and indoor localization.

8. CONCLUSION

This paper pursues a hypothesis that motion patterns and cloth-
ing colors may pose as a human fingerprint, adequate to discrim-
inate one individual from others. If successful, such a fingerprint
could be effectively used towards human recognition or content
announcement in the visual vicinity, and more broadly towards
enabling human-centric augmented reality. Pivoted on this vi-
sion, we develop a proof of concept — InSight — which correlates
motion fingerprint extracted from the video with those extracted
from smartphone sensors. Clothing colors offer additional di-
mensions of correlation, boosting the confidence in recognition.
We find promise in this direction, and are committed to building
a fuller, real-time, system.
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