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Abstract formance is usually evaluated by subjectively or objedyive

judging on several sample images [19, 31, 12, 6, 15, 20, 46].
Image segmentation and its performance evaluation are verySuch evaluations on a small number of sample images lack
difficult but important problems in computer vision. A major statistical meanings and may not be generalized to other im-
challenge in segmentation evaluation comes from the fun-ages and applications. To address this problem, it has been
damental conflict between generality and objectivity: For agreed that a benchmark, which includes a large set of test
general-purpose segmentation, the ground truth and segmenimages and some objective performance measures, is neces-
tation accuracy may not be well defined, while embedding thesary for segmentation evaluation [11].

evaluation in a specific application, the evaluation result For benchmark-based image-segmentation evaluation [11,
may not be extensible to other applications. In this paper, 5] we usually desire two important propertiesbjectivity
we present a new benchmark to evaluate five different imageyng generality Good objectivity means that all the test im-
segmentation methods according to their capability of sepa ages in the benchmark should have an unambiguous ground-
rating a perceptually salient structure from the backgrdun tryth segmentation so that the segmentation evaluation can
with a relatively small number of segments. This way, we nothe conducted objectively. Good generality means that tte te
only find a large variety of images that satisfy the requiretne  jmages in the benchmark should have large variety so that the
of good generality, but also construct ground-truth segmen eyajuation results can be extended to other images and appli
tations to achieve good objectivity. We also present a specations. Unfortunately, there exists a well-known dilemma
cial strategy to address two important issues underlying th  petween objectivity and generality in benchmark-based seg
benchmark: (a) most image-segmentation methods are nofentation evaluation: On the one hand, by collecting a large
developed to directly extract a single salient structute) (variety of testimages that are not associated to specifié-app
many real images have multiple salient structures. We applycations, the ground-truth segmentation of many images may
this benchmark to evaluate and compare the performance ofot pe unambiguously and uniquely defined [11], as illus-
several state-of-the-artimage-segmentation methodsidr  trated in Fig. 1; on the other hand, by restricting the segmen
ing the normalized-cut method, the watershed method, the eftation evaluation to a certain category of images and/or to a
ficient graph-based method, the mean-shift method, and thepecific application(e.qg., locating faces in photos), ted-e
ratio-cut method. uation results may not be applicable to other applications,
Keywords: Image-Segmentation Evaluation, Figure- although the well-defined ground truth and segmentation-
Ground Segmentation, Performance Upper Bound Analysis.performance measures are available.

The goal of this paper is to develop a new image-

1. Introduction segmentation benchmark by seeking a better balance be-

tween the objectivity and the generality in evaluating imag
By partitioning an image into a set of disjoint segments segmentation. Particularlwe specify the goal of image seg-
to represent image structures, image segmentation leads tmentation as extracting the single most salient structare i
more compact image representations and bridges the gap behe image.n this formulation, the ground truth is a segment
tween the low-level and the higher-level structures. As thewith a closed boundary that can be more easily and unam-
central step in computer vision and image understanding, im biguously constructed for many natural images, as shown in
age segmentation has been extensively investigated in th&ig. 1(b). By treating the salient structure as the foregrbu
past decades, with the development of a large number ofiigure and the remaining portion as thackgroundsuch a
image-segmentation methods [10, 22, 9, 14, 16, 1, 2, 23, 13formulation is usually referred to d&ure-groundsegmen-
28]. However, general-purpose image segmentation isstill  tation in prior literatures. For convenience, we will contée
unsolved problem; we still lack reliable ways in performanc to use this terminology in this paper. However, it must be
evaluation for quantitatively positioning the state of #eof emphasized that the “background” in our test images, as dis-
image segmentation. In many prior works, segmentation per-cussed in detail later, has a more general meaning than a triv



from background would be a more general measure for evalu-
ating its performance. Such a formulation of image segmen-
tation also has many applications in computer-vision tasks

such as content-based image retrieval.

In the remainder of this paper, Section 2 briefly reviews
the related work on image-segmentation evaluation and sum-
marizes the contribution of this paper. Section 3 introduce
the benchmark construction. Section 4 briefly introduces
the six image-segmentation methods evaluated in this pa-

(d) © U] per. Section 5 describes the performance measure we used
in evaluation. Section 6 reports the evaluation resultdef t
Figure 1: The figure-ground segmentation is usually betterselected methods on our benchmark. A brief conclusion is
defined than the general-purpose segmentation: (a) a sangiven in Section 7.
ple image. (b) The unambiguous ground truth in the figure-
ground segmentation. (c-f) Four different ground-trutg-se 2 Related Work and Our Contribution
mentations produced by different people in the general-
purpose segmentation, i.e., partitioning the image intoran ~ There has been a large number of literatures on the image-
fixed number of segments. segmentation evaluation developed in the past decades. Mos
of previous works are focused on developing better ways to
measure the accuracy/error of the segmentation. Some of
ial background region of homogenous intensity or uniform them [47, 37, 36] do not require the ground-truth image seg-
texture as assumed in prior figure-ground segmentatian lite mentation as the reference. In these methods, the segmen-
atures. Actually the background segment may contain manytation performance is usually measured by some contextual
other structures. With this formulation, we include a large and perceptual properties, such as the homogeneity within
variety of test images, which guarantees the generalith®ft the resulting segments and the inhomogeneity across neigh-
proposed benchmark. boring segments. For example, in [36], the segmentation of

However, we need to address two important issues in ap-an image sequence (video) is evaluated by checking the ho-
plying this benchmark to evaluate various general-purposemogeneity of the resulting segments.
image-segmentation methods. First, most available image- Most of the prior image-segmentation evaluation meth-
segmentation methods are not specifically designed to exods, however, need a ground-truth segmentation of the con-
tract a single salient structure. Instead, they usuallyitpar sidered image and the performance is measured by calcu-
an image into more than two disjoint segments, as shownlating the discrepancy between the considered segmemtatio
in Fig. 1(c-f), and the segmentation accuracy is usually de-and the ground-truth segmentation [19, 31, 12, 6, 15, 20, 33,
pendent on the number of resulting segments. In this paper39, 34, 35, 42, 43, 44, 40]. Since the construction of the
we develop a special strategy and propose a new concept afround-truth segmentation for many real images is labor in-
“upper bound” performance to address this problem. With tensive and sometimes not well or uniquely defined, most
this strategy, a good image segmentation is expected to acef prior image-segmentation methods are only tested on: (a)
curately separate the ground-truth salient structure fitoen ~ some special classes of images used in special applications
background while keeping the number of resulting segmentswhere the ground-truth segmentations are uniquely defined,
to be small. Based on this strategy, all the five segmenta<{b) synthetic images where ground-truth segmentatiorsis al
tions shown in Fig. 1(b-f) might be good segmentations be-well defined, and/or (c) a small set of real images.
cause all of them separate the ground-truth foreground and For examples, in [33], a performance measure is devel-
background into different segments. Second, many real im-oped to evaluate the medical image segmentation, where the
ages contain multiple structures, and the salient stradtur  test images are synthesized according to a medical-imaging
not unambiguously defined. Although in our benchmark, we model. In [39], the segmentation of some special medical
collect only the images with an unambiguous salient struc-images are evaluated with ground-truth segmentations ex-
ture, we expect that the images with multiple salient struc- tracted by multiple expert observers. The test dataddre
tures can also be included and evaluated in this benchmarkcardiac images angl0 skull images. The main goal of the
In this paper, we address this problem based on the same spevork [39] is to investigate whether an automatic segmen-
cial strategy for “upper bound” performance and extend thetation agree with the observers’ segmentation and whether
goal of image segmentation separating a specified salient the different observers’ segmentations agree with eaatroth
structure from the background with a small number of seg- Goumeidane et al [34] suggest a performance measure based
ments While the general-purpose image segmentation mighton two distortion rates of the resulting segments to treat
be formulated in different ways in different applicatiomss both under-detected and over-detected pixels. Expergnent
believe that the capability of separating the salient stmes are conducted only on several simple binary synthetic im-




ages. Cavallaro et al [35] develop a performance measure Different from the Berkeley benchmark, in this paper, a
that combines both objective and perceptual errors and use isingle ground-truth segmentation is constructed for eash t

to evaluate the segmentation of a sequence of images witlimage by extracting a salient structure from this image. We
manually labelled segmentation. Freixenet et al [42] pro- thenonlycollect images with some identifiable salient struc-
pose a performance measure that combines boundary antiire into the benchmark. This way, it is easier to constiuet t
region information and test several image-segmentation al ground-truth segmentation and define the segmentation accu
gorithms on some synthetic data and several special classescy while the evaluation generality can still be well kethw

of images in the USC-SIPI database. Everingham et al [6]the large variety of the collected images. Particularlyhve
suggest to evaluate segmentation from different perspescti - single ground-truth segmentation, the proposed benchmark
but avoid combining them into a single performance mea- avoids the problem of tolerating unreasonable refinement in
sure. In [6], six general-purpose segmentation algoritaras  the evaluation measures as in the Berkeley benchmark. The
evaluated o100 samples images of urban and rural outdoor contributions of this paper can be summarized as

scenes. Droogenbroeck and Barnich [43] propose a stafistic
measure to evaluate the performances of image segmentation
against the ground truth segmentation, without any experi-
mental study. Motivated by the concept of phase-modulated
signals, Paglieroni [44] develops a new performance mea-
sure for evaluating image segmentation against the ground
truth. The experiment is conducted on one satellite image.
Cardoso and Corte-Real [40] recently develop another mea-

sure to evaluate image-segmentation results against Bsing > \wjith a single defined ground truth segmentation that

1. By formulating the goal of image segmentation as ex-
tracting a salient structure from the image, a large vari-
ety of test images can be easily collected, and the man-
ual construction for ground-truth segmentation can be
easily performed. In this stage, we have collecté3
test images and constructed their ground-truth segmen-
tations.

ground-truth segmentation by combining perceptual and con only consists of two segments, the segmentation perfor-
textual information. The experiments are conducted in sev- mance measure can be more robustly defined and used.
eral sample images. Pal and Pal [45] and Zhang [31, 41] |, this paper, we simply use the Jaccard coefficient [48]
prowde surveys of some early image-segmentation evalua- 55 the performance accuracy measure. In fact, many
tion methods. new measures developed in previous literatures, as dis-

. ) cussed above, may also be adapted and used in the pro-
Different from these above methods, this paper presents a posed benchmark.

benchmark for evaluating general-purpose image segmenta-

tion method on a large variety of real images. The work most 3. While image segmentation performance is highly de-
related to ours is the Berkeley image-segmentation bench-  pendent on the number of produced segments, we in-
mark [11]. The Berkeley benchmark contains more than troduce a concept of “upper bound” performance in this
1000 various natural images. Since the ground-truth seg- benchmark to better describe and address this problem.
mentation may not be well and uniquely defined, each test Furthermore, this new concept allows the inclusion of
image in the Berkeley benchmark is manually segmented by  test images with multiple salient structures.

a group of people. Without any special guidance, such man-
ual segmentations reflect the general human perception and 4.
therefore, different people usually construct differerdam

ual segmentation on the same image. Particularly, differen
people may partition an image into different number of seg-
ments, as illustrated in Fig. 1. The Berkeley benchmark col—3_ Test-lmage Database Construction

lects all different manual segmentations of an image as the

ground-truth segmentation, i.e., the ground-truth sedazen As the first stage of the benchmark construction, we col-
tion is non-unique. While this benchmark achieves good gen-lected1023 real natural images from internet, digital photos,
erality, it has some problems on the evaluation objectivity and some well known image databases such as Corel. We
Given non-unique ground truths, this benchmark develops acarefully examined each image before including it into the
global consistency error (GCE) and a local consistency er-database. A particular requirement is that each image con-
ror (LCE) for measuring the segmentation accuracy. Thesetains a salient foreground structure that is unambiguous in
two measures tolerate unreasonable refinement of the grounuman visual perception. This way, the ground-truth seg-
truth, i.e., if the segmentation is a refined version of the mentation can be easily constructed by manually extracting
ground truth, or vice versa, the segmentation error is zero.the closed boundary of this salient structure. To make this
Therefore, trivial segmentations, where each segment onlybenchmark suitable for evaluating a large variety of image-
contains one pixel or the whole image is a single segment, al-segmentation methods, color information is removed and all
ways produce “perfect!00% segmentation accuracy in this the images are unified ®56-bit gray-scale images in PGM
benchmark. format, with a size in the range 80 x 80 to 200 x 200.

We apply the develop benchmark to evaluate five state-
of-the-art image-segmentation methods and obtain sev-
eral insightful observations.



We hired two computer-science undergraduate students tamther viewers, may still result in a different foregrounaist
build this test-image database. They use the following-stra ture. In Section 5, we will develop a special strategy to han-
egy to decide whether to include an image into the databasedle this problem. With this special strategy, an image with
First, both of them look at the considered image and selectmultiple salient structures can still be evaluated. Theyonl
the most salient structure independently. Second, if bothrequirement is to pick one salient structure and label ihas t
of them select the same structure without any reservationground-truth foreground. We believe the ground truths con-
this image will be included into the database. Otherwise, structed by these two students well satisfy this requirdgmen
if they choose different structures or any one of them has
reservations in determining the most salient structurs, th 4, Selected Image-Segmentation Meth-
image will not be included. After one image is decided to be
included into the database, they work together to construct ods

a single ground-truth segmentation by extracting the dose gased on the above benchmark, we evaluate the following
boundary of the identified salient structure. five image-segmentation methods:

e Normalized-cut method (NC) [16] implemented by Shi
and Malik [4].

o Efficient graph-based method (EG) [13] implemented
by Felzenszwalb and Huttenlocher [8].

e Mean-shift method (MS) [2] implemented by Comani-
ciu and Meer [3].

e Watershed method (WS) [22] (Matlab implmentation).

e Ratio-cut method (RC) [28] implemented by Wang et
al. [29].

Sample image segmentations resulting from these meth-
ods are shown in Fig. 3. We choose these five methods based
on three considerations: (a) they well represent diffecaitt
egories of image-segmentation methods; (b) all of them are
relatively new methods and/or implementations that wel re
resent the current state of the art of general-purpose image
segmentation; (c) the software implementations of thege fiv
methods are publicly available. In the following, we briefly
overview these five methods.

Normalized-cut method (NC)[16, 4]. In NC, an image
is modelled by a grapty = (V, E'), whereV is a set of ver-
tices corresponding to image pixels ahds a set of edges
connecting neighboring pixels. The edge weigft;, v) de-
scribes the affinity between two verticesandv based on
their intensity similarity and spatial proximity. Usingish
Figure 2: Nine sample images in our image database and th%raph model, segmenting an image into two segments corre-
ground truth produced manually. sponds to a graph c(tl, B), whereA andB are the vertices

. : in two resulting subgraphs. In NC, the segmentation cost is
Figure 2 demonstrates several sample images and theifj.fined by

ground-truth segmentations in the current image database.
Note that we intentionally collect images with various fore cut(A, B) cut(A, B)
ground structures(such as human, animal, vehicle, bgjldin Neut(4, B) = (A4,V) (B,V)’
assoc(A, assoc(B,
etc.) and various backgrounds. Also note that, in the col-
lected images, the salient structure may not be the onlgstru wherecut(A, B) = .4 ,cpw(u,v) is the cut cost of
ture in the image, and the background may contain some(4, B) andassoc(A, V) = 3, c 4 ey w(u,v) is the asso-
structures that are not as perceptually salient as the foreciation betweem andV. NC segments the image by finding
ground one. Certainly, the decision made by these two stu-the cut(A, B) with the minimum cost (1). Since this is a NP-
dents may not always be psychophysically consistent withcomplete problem, a spectral-graph algorithm was develope
other people, i.e., some collected images, when presemted tto find an approximate solution. This algorithm can be easily

1)



repeated on the resulting subgraphs to get more segments. In
the NC method, the most important parameter is the number
of regions to be segmented. In our evaluation, we are going
to vary this parameter to measure its performance.

Efficient graph-based method (EG) [13, 8]. Similar
to NC, EG adopts a graph model and finds the evidence
of a boundary between two segments based on the inten-
sity differences across the boundary and the intensitgdiff
ences within each segment. However, the intensity differ-
ence within a segment is defined as the largest edge weight
of the minimum spanning tree built from this segment, and
the intensity difference across the boundary is definedeas th
minimum edge weight that connects these two segments. EG
takes onlyO(n logn) computational time to segment an
pixel image. In the adopted implementation [8], there are
three free parameters: a smoothing faetdhat is related to
the Gaussian smoothing scales, a constant pararfieteat
controls how coarsely or finely an image is segmented, and a
parametelS that constrains the minimum area of the result-
ing segments. Varying usually results in different number
of segments. In our evaluation, we fix the smoothing fac-
tor o to its default value and var and S to measure the
segmentation performance.

Mean-shift method (MS) [2, 3]. MS is a data cluster-
ing method that searches for the local maximal-densitytgoin
and then groups all the data to the clusters defined by these
maximal-density points. When used for image segmentation,
each pixelk;,i = 1,...,n in the image is treated as an input
data and the density at poirtis estimated by

n 2
f<x>=#ZK< )
i=1

whereh is the bandwidth parametetjs the data dimension-
ality, ¢ is a normalization constant, arfd(-) is the density
estimation kernel. In the implementation of the mean-shift
method [3], the uniform kernel is used. To locate a local
maximum of the density, an initial point; is selected and
then successively updated by

s \lﬁ';

X —X;
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Figure 3: Sample image segmentation results using the six i1 XK ( e )
selected methods at different parameter settings. (ajr@tig Yi+1 = e
image. (b) Ground truth. (c) EG segmentation. The eight i K (‘ T )

results (from left to right, from top to bottom) are obtained
by setting paramete$ to 20%, 10%, 4%, 2%, 1%, 0.5%, until convergence. With these local maximal-density pgint
0.25%, and0.125% respectively. The segmentation parame- the image can be segmented into regions by grouping each
ters are explained in Section 6.2. (d) MS segmentation. Papixel to its corresponding local maximal-density point. In
rameterS is the same as the one in (c). (e) NC segmentation.the adopted implementation [3], there are mainly three free
Parametek is set to2, 5, 10, 20, 40, 80, 160, 320, respec-  parameters: the spatial bandwidth, the range bandwidth
tively. (f) Watershed segmentation. The varying paramister ., and the minimum segment aréawhich has the same
the Gaussian smoothing filter standard deviation3s, 30, meaning to the one in EG. Since all the test images in our
25, 20, 15, 10, 5. (g) RC segmentation. The number of re- benchmark are gray-level images, the range bandwifjth
gions is set tal, 2, 3, 4, 5, 6, 7, and8 respectively. These which is mainly related to the color channels, is fixed to its
parameter settings are obtained from the experimentaystud default value. The bandwidtH, determines the resolution
and will be discussed in Section 6.



in selecting the local maximal-density points. In otheregr  two segments with one as the foreground and the other as

H, controls the number of resulting segments. the background. However, in most cases, the segmentation
Ratio-cut method (RC) [28, 29]. RC is another graph- methods produce more than two regions. All the methods

based image-segmentation method. Like in NC, an imagepartition an image into a set of disjoint segments without la

is modelled by a graplir = (V, E) in RC, whereV is a belling the foreground and background. Consequently, we

set of vertices corresponding to image pixels dhés a set  develop a region-merging strategy so that they can be fairly

of edges connecting neighboring pixels. Particularly,4he evaluated in the benchmark.

connectivity neighboring system is used in edge constracti Suppose the segments in an imagé are

to makeG a planar graph. The edge weighfu, v) is de- {R1,Rs,...,R,}. RiNR; =0fori # j,andU R, = I.

fined in similar way to the ones defined in NC os that it de- In this case, the ground-truth foreground segment corre-

scribes the affinity between two verticesandv based on  sponds to a subset of the disjoint segments. To evaluate thes

their intensity similarity and spatial proximity. Then tha- methods in our benchmark, we apply a strategy to merge
age segmentation is formulated as finding a graplf4uB3) the segments and then use the merged region as the detected
to minimizes the segmentation cost foreground object. For each segmdRy in an image, we
cut(A, B) count it into the foreground if it has more thars0 percent
Reut(A,B) = ———2"2_ ) overlap with the ground-truth foregroundl in terms of the
assoc(A, B) area, i.e.,

wherecut(A, B) andassoc(A, B) are defined in the same

way as in NC. RC segments the image by finding the cut

(A, B) with the minimum cost (2). In [28], a polynomial- R= U Ri.
time algorithm is developed to find the minimum-cost ratio ixp(Ri,A)>0.5
cut in a globally optimal fashion. Similar to NC, this algo- where

rithm can be repeated on the resulting subgraphs to get more

segments. The most important parameter is the number of |IR;NA| |R;N A|
regions to be segmented. In our evaluation, we are going to p(Ri, A) = max R 4]
vary this parameter to measure its performance.

Watershed method (WS) [25, 22]. An example of using this merging strategy for performance
Watershed method, also called watershed transform, is arevaluation is illustrated in Fig. 4.
image segmentation approach based on mathematical mor-
phology. In geography, a watershed is the ridge that divides
areas drained by different river systems. By viewing an im-
ages as a geological landscape, the watershed lines deter-
mine the boundaries that separate image regions. In the to- \ \
pographic representation of an imafjehe numerical value
(i.e., the gray tone) of each pixel stands for the elevatton a @ () ©

this point. The watershed transform computes the catch-_. o . . : .
. : : . . Figure 4: Anillustration of evaluating an image segmentati
ment basins and ridge lines, with catchment basins corre-

sponding to image regions and ridge lines relating to regionresu“ in the proposed benchmark: (a) an image-segmentatio
boundaries. Methods for computing the watershed trans—re.su“; (b) the boundary of the ground-truth §egmentaﬁkm(

form are discussed in detail in [22, 30]. In our evaluation t.h'Ck curve) overlapped on the segmentann resplt; © Fhe
we use the watershed-transform fu’nction of Matlab 7. Howy- figure-ground segmentation (the thick curve) derived using

ever, the Matlab implementation of the watershed transformthe proposed region-merging strategy.

is very sensitivity to image noise and usually produces-over _ . i

segmented regions. To solve this problem, we first smooth f_Note that in the merr?lr;]g process, we fr'lnd :]he best Zubser:
images with Gaussian smoothing filters of different scales? Image sdegrt?entt: ,W'L the as;umpnonlt at tl_e groun :rut
before applying the watershed transform. By varying the pa- foreground objectl is known. But in real applications, the

rameter of Gaussian filters, we can segment an image into éoregr"“”d IS npt known t_)eforehand. In this sense,.by as-
target number of regions suming that an ideal merging post-process always exiss, th

evaluation based on this strategy in fact represents anruppe

bound performance.

5 Performance Measure This strategy is particularly useful in addressing another
important problem mentioned in Section 1 — Many real im-

To evaluate segmentation using this benchmark, the mosages contain multiple salient structures in which the most

desirable form of segmentation output is certainly a figure- salient one may not be unambiguously defined from the hu-

ground-style segmentation, i.e., the image is partitianéal man perception. Using this strategy, we can still includshsu




images into the database and simply label one salient struc. Evaluation Results

ture to construct the ground truth. The basic assumption un- ) _ .

derlying this evaluation strategy is that a good segmenriati /N this section, we empirically evaluate the performance of
method should be able to detect a specified salient structurdlC: EG, MS, WS, and RC on the proposed benchmark. We
in an image even if this image contains multiple salientestru  first show and compare the performance of these methods
tures. and the effects of their respective parameters. Then we show

. . ._the relation between the performance and the number of seg-
The basic performance measure we implement for this

benchmark is Jaccard coefficient [48], which measures thements in each method. We also reveal correlation among

. L . these methods and investigate the performance by choosing
region coincidence between the segmentation result and th e best segmentation method (out of these five methods) for
ground truth. Specifically, let the regia# be the ground- 9

truth foreground structure and the regiéhbe the merged each individual image.
segments derived from the segmentation result using the
region-merging strategy. We define the region-based segg 1  Performance Curve
mentation accuracy as
In this section, we show the segmentation performance using
PR A |RNA| |[RNA| 3 a cumulative-performanckistogram curv_@(:c) : [0,_1] —
(R;A) = [RUA| R+ A~ |RNA[ 3) [0,1] (or performgncg curven short), which desc_rlbes the
performance distribution on all023 images. In this curve,
a represents the proportion of images, afd) indicates the
segmentation accuracy defined in Sections 5. A specific point
x,p(x)) along this curve indicates thato - = percent of
e images are segmented with an accuracy lower jlian
rEquivaIentIy, this also means thai0 - (1 — «) percent of
the images produce segmentations with accuracy better than
ep(x). Using a new segmentation method or a segmentation-
parameter setting certainly will produce a new performance
curve. Clearly, the higher a performance curve in the Carte-
sian coordinate system, the better the performance of the co

g . : o " responding segmentation method and the parameter setting.
(false positives). This region-based measure is insgagiti . ;
- . . . In this section, we also show the average performance
small variations in the ground-truth construction and mco  _ . ;
on all 1023 images in some tables. From the perfor-

porates the accuracy and recall measurementinto one uniﬁe§nance curve. the average performance can be derived b
function: This measure involves both false positives atefa RS ’ q 9 ] P h di ; y
negatives. Fig. 5 shows sample segmentation results aind the? =~ Jo p(x)dz, andp(0.5) is the median performance on
segmentation accuracy using the proposed strategy. all images. Clearly, theumulative-performanchkistogram

X . curvep(x), 0 < x < 1, describes the performance distri-
Note that the segmentation accuracy mentioned abov

| id bound of th , ; Sution on all images and therefore conveys more informa-
only provides arupper-bound of the segmentation perior- — yion, than the average performangelhe performance curve

mance by assuming an ideal postprocessing step of regioqg continuous and monotonically non-decreasing. Two seg-

merging. Note that this upper-bm_md perform_an(_:e may NOty,antation methods can have the same average performance
be achieved or even approached in real applications, Wher%ut drastically different performance curves
the ground truth is nad priori known. In general, the upper- '

bound performance calculated using this strategy is useful

only when the total number of segmentsjs small. Forthe 6.2 Segmentation Performance with Varied
extreme case where each pixel is partitioned as a segment, th Parameter Settings

upper-bound performance obtained is a meaningless value of

100 percent. This is a little similar to the GCE and LCE Efficient-graph method (EG). The EG has two main param-
measures developed in the Berkeley benchmark. But theeters: K, which controls the splitting process of a segment,
difference is that GCE and LCE also result in meaninglessand.S, which constrains the minimum area of each resulting
high accuracy when too fewer segments are produced, sucBegment. Table 1 shows that the paramétexffects the per-
as the case where the whole image is partitioned as a singléormance less thaf does and the most appropriate value of
segment. In this paper, we always set the segmentation pakX appears to b&00. For all tested values dk, the average
rameters to produce a reasonably small number of segmentperformancep increases as the minimum region areale-
when applying the strategy to merge the image regions. Forcreases. However, whefigets very smallp reaches a limit
simplicity, we always refer to “upper-bound performance”a and cannot be improved any further. We can find in Table 1
“performance” in later sections when there is no confusion. that$ is the dominant parameter in EG.

where| - | is the operation of computing the region area.
Different from the region-coincidence-based GCE and LCE
measures used in the Berkeley benchmark, this measure h
no bias to the segmentations that produces overly large o
small number of segments. The numerat®,N A|, mea-
sures how much the ground-truth structure is detected. Th
denominator]A U R|, is a normalization factor which nor-
malizes the accuracy measure to the randé,df]. With this
normalization factor, the accuracy measure penalizesrthe e
ror of detecting irrelevant regions as the foreground segme



(b)
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(e)

Figure 5: Sample image segmentation results and their pegfoce values. (a) Original image; (b) ground-truth segatém;

(c)-(f) Segmentation results with different performancés (c)-(f), the background regions are shown as white negjiahe
detected object regions are shown as the whitened origired€; the boundaries of the regions are shown as black firtegi
figure. The accuracy of segmentation results in (c)-(f).i5 0.7, 0.8, and0.9, respectively.

(d)

Figure 6 (a) shows the performance curves resulting from  Mean-shift method (MS). The MS method has two main
variedS. The parameteK is fixed as100. To makeS in- parameters: the level of resolutidih; and the minimum al-
variant to the image size, we redefifido be the ratio of the  lowed segment areél. Similar to the EG,S is measured as
minimum allowed segment area to the total image area. Wethe percentage of the image area. Table 2 shows the average
can clearly see the limit gf(x) resulting from the decreased performance when setting different values fdi; andsS. It
S. Even when we sef to be the minimal valué,,,;,, that al- indicates that the minimum allowed segment afeaffects
lows single-pixel segments(x) # 1 because the parameter the performancg much more tharf/; does. Better perfor-

K keeps an image from being overly-segmented into indi- mance can usually be achieved whénis 1. Similar to EG,
vidual pixels. In fact, we found that, whefis set to be the  there exists a performance limit in MS because other parame-
minimal value, the average number of produced segments irters prevent an image to be segmented into individual pixels
an image is around00, which is too many for most appli- Figure 6 (b) shows the performance curyé¢s) with varied
cations. Figure 6 (a) also shows that, when< 1% (of S and a fixedH, = 1. Particularly, the performance curve
the image area, as redefined above), the performance curvg(z) reaches the limit when the average number of produced
p(z) moves up only marginally with the decreasing%fTa- segments is more the?000. When the average number of
ble 1 and Figure 6 (a) suggest that an appropriate vale of produced segments gets odr(corresponding t¢ < 1%),

is 1% and the performance curygzx) well approaches the the performance curve moves up much more slowly. This
limit when S = 0.25%. In that case, the expected number of suggests that, in this benchmark, it is appropriate to ptedu
produced segments ). 10 — 100 segments when using MS, with a reasonable value
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Figure 6: The performance curves of the five image-segmentatethods on thé023 images in the database. (a) Efficient
Graph (EG); (b) Mean-Shift (MS); (c) Normalized Cut (NC); (d/atershed (WS); (e) Ratio Cut (RC). In (a) and (b), the
parameter is the minimum allowed segment a$edn (d), the parameter is in Gaussian filters. In (e), the varied parameter
is the target number of regions. In (c) and in the parenthefsither subfigures, we show the average number of regions
corresponding to the parameters.



Parametef: The minimum allowed segment area measured as the peressitite image area
Parameteds || 50% | 20% | 10% | 4% [ 2% [ 1% | 0.5% | 0.25% [ 0.125% [ 0.06% | Smin

100 || 0.26 | 0.33 | 0.44 | 0.58| 0.68| 0.76| 0.82 | 0.85 | 0.87 0.89 | 0.90

300| 0.26 | 0.33 | 0.45| 0.60| 0.68| 0.74| 0.77 | 0.79 | 0.80 0.80 | 0.81

500| 0.26 | 0.35| 0.46 | 0.60| 0.66| 0.70| 0.72 | 0.73 | 0.74 0.74 | 0.75

1000| 0.26 | 0.36 | 0.46 | 0.55| 0.58 | 0.59| 0.61 | 0.61 | 0.62 0.62 | 0.63

Table 1: The average performance of EG (ornial3 images) at different parameter settings,;,, indicates the minimal value
corresponding to the case of allowing single-pixel segment

Parametef: The minimum region area (measured as the percentage ahtgeiarea)

ParameteH, || 50% [ 20% [ 10% [ 4% [ 2% | 1% ] 0.5% | 0.25% [ 0.125% | 0.06% | Smin
1 0.26 | 0.40| 0.50| 0.58| 0.63| 0.67| 0.70 | 0.73 | 0.74 0.76 | 0.81
3] 0.26]|0.40| 0.50| 0.59| 0.63| 0.67| 0.70 | 0.72 | 0.74 0.75 | 0.77
71 0.26| 0.40| 0.50| 0.60| 0.65| 0.69| 0.71 | 0.72 | 0.73 0.74 | 0.76
10 0.26 | 0.41| 0.51| 0.61| 0.66| 0.69| 0.71 | 0.72 | 0.72 0.73 | 0.76

Table 2: The average performance of MS at different paransettings..S,,:, indicates the minimal value corresponding to
the case of allowing single-pixel segment.

of 40. Particularly, we sefV = |20 + 1 and Fig. 6 (d) shows the
Normalized-cut method (NC).In NC, we vary the pa- performance of the WS with different Gaussian smoothing
rameterk, the target number of segments. The maximum filters.
possible value of: is the total number of pixels; in that case Ratio-cut method (RC). The ratio-cut package [29] con-
p(z) = 1,z € [0, 1]. As shown in Fig. 6(c), while the curve tains several parameters. In our experiment, we first use the
p(z) moves up (not surprisingly) dsincreases, it does not default parameters to get a segmentation that is usually an
move up in a linear way in terms of the increasekofThe over segmentation of the input image. In this process, the
largest move-up gf(z) happens wheh increases fron2 to ratio cut algorithm iteratively partitions a segment inteot
5, and after that the move-up pfz) is not substantial even  sub-segments until the ratio-cut cost is larger than a given
if we increasek logarithmically. While a largek improves  threshold. The allowed range for this threshold)is- 765
the upper-bound performanpér), such an upper-bound be- and the default value of this threshold$$5. In this package,
comes more difficult to achieve because of the required post-an iterative region-merging algorithm is developed to lu
processing of region merging. Thus we need to find an ap-the number of segments; the merging criterion is as defined
propriatek by seeking a compromise. From the experimental in Eq.2. The varied parameter for ratio cut in our experi-
results shown in Fig. 6 (c), we suggest selecting be less  mentis the target number of segments for merging. Note that
than160, with 40 being the expected value when using NC in practice, we may not get the target number of segments
on this benchmark. through merging in some images where the initial number
Watershed method (WS).The watershed transform usu- of segments is smaller than the target number. In our exper-
ally leads to over-segmentation of images due to imageiment, we vary this target number in the range2of 320
noise and other local irregularities. To overcome this prob and find that the actual obtained average number of segments
lem, researchers have proposed many strategies such as ren all 1030 images are correspondingly varied in the range
gion merging [24], marker-controlled watershed segmenta-2 — 102, as shown in Fig. 6 (e).
tion [25, 22], hierarchical segmentation [27], and muttake
segmentation [26]. In our evaluation, we use the MATLAB .
function of watershed transform. To achieve segmentations6'3 Performance Comparison
yvith d?ﬁerent number of segments, we adopt a strategy thatg 3 1 Comparison of the average performance
is similar to that of the multi-scale segmentation [26]: Be-
fore the watershed transform, each image is smoothed usWe first compare the average performance of differentimage-
ing a Gaussian filter of different scales. This preprocegsin segmentation methods. To make a fair comparison, we com-
suppresses image noise and reduces the number of segmenare the average performance when images are segmented
produced by the watershed transform. In the Gaussian fil-into the same number of segments. Table 3 shows the aver-
ters, we vary the filter siz&V and the standard variation age performancg of these methods in terms of the number
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of produced segments. For EG and MS, the number of pro-is partitioned as a segment, a perfect performanck ®fs
duced segments are controlled by the paramgtere., the achieved. However, most image segmentation methods do
minimum allowed segment area. Therefore, we continuouslynot allow such trivial segmentation. For example, in EG,
vary S to achieve segmentation with different number of seg- even when the minimum allowed segment is set td pixel,
ments. For NC, we directly control the number of segmentsthe parametek prevents each pixel from being partitioned
for each image. For MS, we vary the Gaussian smoothing fil-as a separate segment.

ter to achieve the target number of regions. For RC, we vary  In Fig. 7, we can also see that the NC method is slightly

the variable of target number of regions for each image. better than the other methods when less tfasegments are
produced. Wher0 — 100 segments are produced, the per-
Number of segment§ EG [ MS | NC | WS | RC formance of the EG and NC are close, and are better than the
5 0521 046105810281 046 performance of the other methods. As mentioned above, we
10 065105710701 030] 052 usually have little interest when more tha®0 segmentation
20 076 0661 07810381059 are produced. Table 3 and Fig. 7 also suggest the appropriate
20 0831 07110821047 067 choices of the segmentation parameters. It shows thahéor t
80 0871073/ 08510541 076 images in this benchmark, EG, MS, and NC all reach reason-

ably good performance when images are segmented into no
more than’0 segments. The experimental results show that
Table 3: Comparison of the average performance of five im-the appropriate range of the number of segments is 100.

age segmentation methods. Particularly, aroundi0 segments are expected to be the tar-
get for EG, MS, and NC. The performance curve of the RC

From Tables 3, we can see that, in the proposed benchappears to be more linear, and an appropriate number of seg-
mark, the average performance of the four methods (EG,ments is100.
MS, NC, RC) are saliently better than WS for all the selected  From Table 3 and Fig. 7, we can surely draw the con-
number of segments. The performance of the EG, MS, NC,clusion that the segmentation problem defined in this paper,
and RC are very close, although the EG and NC methods aré-€., separating one specified salient structure from tieé-ba
slightly better than MS and RC in performance. For all these ground when partitioning an image into a relatively small
five methods, the average performance increases with the infumber of segments, is far from solved with the state-of-
crease of image segments. However, as mentioned abovéhe-art segmentation methods. Note that the performances
this performance shown here is an upper-bound one: withdiscussed in above are still the upper bounds that are usu-
the increase of the resulting segments, this upper-bound pe ally difficult to reach in real applications. Also be reminide
formance becomes much more difficult to reach through re-that these 023 images are carefully examined beforehand so
gion merging_ From this perspective, the upper-bound per-that the human visual system is able to unambiguously ex-

formance derived from over-segmentation (more than tract the single ground-truth foreground structure. Fraim t
segments) is largely meaningless. perspective, we can see that there is still a long way to go

to solve the general-purpose segmentation, where the droun
truth may not be well defined.

6.3.2 Performance vs. the number of segments

To further investigate the relation between the perforneanc 6.3.3 Comparison of winning cases

and the number of segments, we evaluated the average per-

formance of the methods when different number of segmentsTo better compare the relative performance of different
are produced. Figure 7 shows the trend of the average perimage-segmentation methods, we also count the number of
formance with the increase of the number of segments. Weimages on which one method outperforms the others. For
have two observations here: (a) A trade-off exists betweenexample, if NC achieves the best performance on an image
the number of segments and the segmentation performancd,;, we consider NC the winner ofy. For each method, we
Although the average performance is always monotonically choose the best parameter setting from all the parameters we
increasing in all five methods, their increase speeds deerea tested. We then count the number of winning images of each
when the number of segments gets big. For example, whersegmentation method and show the result in Table 4.

the number of segments increases fro60 to 300 in NC From Tables 3 and 4, we can see that when less than
method, the average performance only increases by less thasegments are produced, NC wins the most times among the
0.03. Such an increase is almost meaningless, since an infive methods. When targeting for more theihsegments, EG
crease 0200 segments makes the postprocessing of regionwins more times than the other methods. Since the average
merging much more difficult and therefore, thi®3 increase  performance of EG is very close to that of NC, it indicates
of the upper-bound performance may not be achieved at althat EG may win only marginally on most images. WS wins
in practice. (b) There exists a performance limitation in the least times and has the worst performance. Basicatly, fo
some segmentation methods. Theoretically, when each pixeEG, MS, NC, and RC, there is no strong evidence (based

11
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Figure 7: The average performance of the five image segniemtaiethods in terms of the number of segments.

Number of segment§ EG [ MS [ NC [ WS RC 6.4 Combination of Image Segmentation
5 292 189] 325[ 67 [ 150 Methods
10 2581 197 | 379| 18 | 171
20 3211 205 | 296 | 12 | 189 Besides evaluating and comparing the performance of indi-
40 381 206 | 223 5 208 vidual image-segmentation method, it is also important to
80 216 | 2131 1861 1 207 know whether and how these methods are statistically re-

lated. If these five methods can complement each other, then
it would be worthwhile for researchers to further investga
Table 4: The number of winning times of each method in Ways to boost the performance by combining them. To bet-
terms of the number of produced segments. ter understand the correlation of these methods, we pick the
best method (out of the five test methods) for each individual
image and investigate the performance. We call this virtual
on Table 3 and Table 4) showing that one specific methodmethod as the “combined method” and its performance as
is apparently superior to the others. In fact, their averagethe “combined performance”. This combined performance
performances are very similar when the number of segmentgndicates the best performance we can get by “ideally” com-
is 80. bining these five methods. Therefore, it is the upper-bound
Several other reasons prohibit us from ranking the five performance of these five methods. Note that this “combined
segmentation methods: (a) Most performances listed herenethod” is not a real method and cannot be implemented
are estimations of upper bounds. Whether we can reach oin practice because it requires the ideal selection of tis¢ be
approach the upper bound largely depends on specific apmethod for each image. In this paper, we introduce the con-
plications; (b) Many methods are not especially developedcept of the “combined method” for the only purpose of inves-
for figure-ground-style segmentation formulated in this pa tigating the upper bound performance of these five methods.
per. Their performance may still be significantly improvéd i In combining the five methods, we specify the the num-
they are tuned to the figure-ground segmentation. ber of segments. Figure 8(a-d) shows the performance of
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this combined method when the resulting segments aré, This benchmark provides a new perspective to quanti-
20, and40, respectively. We can see that the performancetatively evaluate image-segmentation methods. However,
of this “ideal” combined method is not much better than that our experiments show that general-purpose segmentation is
of each individual method. Especially when the number of still far from a solved problem even with the state-of-the-
segments gets big, e.d(), the performance gain by combin- art methods. We make this benchmark available to other
ing the methods is marginal. These results indicates tleat th researchers and hope it will help evaluate new image-
combination of different image-segmentation methods doessegmentation methods.

not substantially boost the the segmentation performance.

7. Contribution and Conclusions

In this paper, we presented a new benchmark for evaluatin
image segmentation. In this benchmark, image segmentati
is evaluated according to its capability of separating aspe
ified salient structure from the background with a relatvel
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