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Abstract

Image segmentation and its performance evaluation are very
difficult but important problems in computer vision. A major
challenge in segmentation evaluation comes from the fun-
damental conflict between generality and objectivity: For
general-purpose segmentation, the ground truth and segmen-
tation accuracy may not be well defined, while embedding the
evaluation in a specific application, the evaluation results
may not be extensible to other applications. In this paper,
we present a new benchmark to evaluate five different image
segmentation methods according to their capability of sepa-
rating a perceptually salient structure from the background
with a relatively small number of segments. This way, we not
only find a large variety of images that satisfy the requirement
of good generality, but also construct ground-truth segmen-
tations to achieve good objectivity. We also present a spe-
cial strategy to address two important issues underlying this
benchmark: (a) most image-segmentation methods are not
developed to directly extract a single salient structure; (b)
many real images have multiple salient structures. We apply
this benchmark to evaluate and compare the performance of
several state-of-the-art image-segmentation methods, includ-
ing the normalized-cut method, the watershed method, the ef-
ficient graph-based method, the mean-shift method, and the
ratio-cut method.

Keywords: Image-Segmentation Evaluation, Figure-
Ground Segmentation, Performance Upper Bound Analysis.

1. Introduction

By partitioning an image into a set of disjoint segments
to represent image structures, image segmentation leads to
more compact image representations and bridges the gap be-
tween the low-level and the higher-level structures. As the
central step in computer vision and image understanding, im-
age segmentation has been extensively investigated in the
past decades, with the development of a large number of
image-segmentation methods [10, 22, 9, 14, 16, 1, 2, 23, 13,
28]. However, general-purpose image segmentation is stillan
unsolved problem; we still lack reliable ways in performance
evaluation for quantitatively positioning the state of theart of
image segmentation. In many prior works, segmentation per-

formance is usually evaluated by subjectively or objectively
judging on several sample images [19, 31, 12, 6, 15, 20, 46].
Such evaluations on a small number of sample images lack
statistical meanings and may not be generalized to other im-
ages and applications. To address this problem, it has been
agreed that a benchmark, which includes a large set of test
images and some objective performance measures, is neces-
sary for segmentation evaluation [11].

For benchmark-based image-segmentation evaluation [11,
5], we usually desire two important properties:objectivity
andgenerality. Good objectivity means that all the test im-
ages in the benchmark should have an unambiguous ground-
truth segmentation so that the segmentation evaluation can
be conducted objectively. Good generality means that the test
images in the benchmark should have large variety so that the
evaluation results can be extended to other images and appli-
cations. Unfortunately, there exists a well-known dilemma
between objectivity and generality in benchmark-based seg-
mentation evaluation: On the one hand, by collecting a large
variety of test images that are not associated to specific appli-
cations, the ground-truth segmentation of many images may
not be unambiguously and uniquely defined [11], as illus-
trated in Fig. 1; on the other hand, by restricting the segmen-
tation evaluation to a certain category of images and/or to a
specific application(e.g., locating faces in photos), the eval-
uation results may not be applicable to other applications,
although the well-defined ground truth and segmentation-
performance measures are available.

The goal of this paper is to develop a new image-
segmentation benchmark by seeking a better balance be-
tween the objectivity and the generality in evaluating image
segmentation. Particularly,we specify the goal of image seg-
mentation as extracting the single most salient structure in
the image.In this formulation, the ground truth is a segment
with a closed boundary that can be more easily and unam-
biguously constructed for many natural images, as shown in
Fig. 1(b). By treating the salient structure as the foreground
figure, and the remaining portion as thebackground, such a
formulation is usually referred to asfigure-groundsegmen-
tation in prior literatures. For convenience, we will continue
to use this terminology in this paper. However, it must be
emphasized that the “background” in our test images, as dis-
cussed in detail later, has a more general meaning than a triv-
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Figure 1: The figure-ground segmentation is usually better
defined than the general-purpose segmentation: (a) a sam-
ple image. (b) The unambiguous ground truth in the figure-
ground segmentation. (c-f) Four different ground-truth seg-
mentations produced by different people in the general-
purpose segmentation, i.e., partitioning the image into anun-
fixed number of segments.

ial background region of homogenous intensity or uniform
texture as assumed in prior figure-ground segmentation liter-
atures. Actually the background segment may contain many
other structures. With this formulation, we include a large
variety of test images, which guarantees the generality of the
proposed benchmark.

However, we need to address two important issues in ap-
plying this benchmark to evaluate various general-purpose
image-segmentation methods. First, most available image-
segmentation methods are not specifically designed to ex-
tract a single salient structure. Instead, they usually partition
an image into more than two disjoint segments, as shown
in Fig. 1(c-f), and the segmentation accuracy is usually de-
pendent on the number of resulting segments. In this paper,
we develop a special strategy and propose a new concept of
“upper bound” performance to address this problem. With
this strategy, a good image segmentation is expected to ac-
curately separate the ground-truth salient structure fromthe
background while keeping the number of resulting segments
to be small. Based on this strategy, all the five segmenta-
tions shown in Fig. 1(b-f) might be good segmentations be-
cause all of them separate the ground-truth foreground and
background into different segments. Second, many real im-
ages contain multiple structures, and the salient structure is
not unambiguously defined. Although in our benchmark, we
collect only the images with an unambiguous salient struc-
ture, we expect that the images with multiple salient struc-
tures can also be included and evaluated in this benchmark.
In this paper, we address this problem based on the same spe-
cial strategy for “upper bound” performance and extend the
goal of image segmentation toseparating a specified salient
structure from the background with a small number of seg-
ments. While the general-purpose image segmentation might
be formulated in different ways in different applications,we
believe that the capability of separating the salient structures

from background would be a more general measure for evalu-
ating its performance. Such a formulation of image segmen-
tation also has many applications in computer-vision tasks,
such as content-based image retrieval.

In the remainder of this paper, Section 2 briefly reviews
the related work on image-segmentation evaluation and sum-
marizes the contribution of this paper. Section 3 introduces
the benchmark construction. Section 4 briefly introduces
the six image-segmentation methods evaluated in this pa-
per. Section 5 describes the performance measure we used
in evaluation. Section 6 reports the evaluation results of the
selected methods on our benchmark. A brief conclusion is
given in Section 7.

2. Related Work and Our Contribution
There has been a large number of literatures on the image-
segmentation evaluation developed in the past decades. Most
of previous works are focused on developing better ways to
measure the accuracy/error of the segmentation. Some of
them [47, 37, 36] do not require the ground-truth image seg-
mentation as the reference. In these methods, the segmen-
tation performance is usually measured by some contextual
and perceptual properties, such as the homogeneity within
the resulting segments and the inhomogeneity across neigh-
boring segments. For example, in [36], the segmentation of
an image sequence (video) is evaluated by checking the ho-
mogeneity of the resulting segments.

Most of the prior image-segmentation evaluation meth-
ods, however, need a ground-truth segmentation of the con-
sidered image and the performance is measured by calcu-
lating the discrepancy between the considered segmentation
and the ground-truth segmentation [19, 31, 12, 6, 15, 20, 33,
39, 34, 35, 42, 43, 44, 40]. Since the construction of the
ground-truth segmentation for many real images is labor in-
tensive and sometimes not well or uniquely defined, most
of prior image-segmentation methods are only tested on: (a)
some special classes of images used in special applications
where the ground-truth segmentations are uniquely defined,
(b) synthetic images where ground-truth segmentation is also
well defined, and/or (c) a small set of real images.

For examples, in [33], a performance measure is devel-
oped to evaluate the medical image segmentation, where the
test images are synthesized according to a medical-imaging
model. In [39], the segmentation of some special medical
images are evaluated with ground-truth segmentations ex-
tracted by multiple expert observers. The test data are44
cardiac images and30 skull images. The main goal of the
work [39] is to investigate whether an automatic segmen-
tation agree with the observers’ segmentation and whether
the different observers’ segmentations agree with each other.
Goumeidane et al [34] suggest a performance measure based
on two distortion rates of the resulting segments to treat
both under-detected and over-detected pixels. Experiments
are conducted only on several simple binary synthetic im-
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ages. Cavallaro et al [35] develop a performance measure
that combines both objective and perceptual errors and use it
to evaluate the segmentation of a sequence of images with
manually labelled segmentation. Freixenet et al [42] pro-
pose a performance measure that combines boundary and
region information and test several image-segmentation al-
gorithms on some synthetic data and several special classes
of images in the USC-SIPI database. Everingham et al [6]
suggest to evaluate segmentation from different perspectives
but avoid combining them into a single performance mea-
sure. In [6], six general-purpose segmentation algorithmsare
evaluated on100 samples images of urban and rural outdoor
scenes. Droogenbroeckand Barnich [43] propose a statistical
measure to evaluate the performances of image segmentation
against the ground truth segmentation, without any experi-
mental study. Motivated by the concept of phase-modulated
signals, Paglieroni [44] develops a new performance mea-
sure for evaluating image segmentation against the ground
truth. The experiment is conducted on one satellite image.
Cardoso and Corte-Real [40] recently develop another mea-
sure to evaluate image-segmentation results against a single
ground-truth segmentation by combining perceptual and con-
textual information. The experiments are conducted in sev-
eral sample images. Pal and Pal [45] and Zhang [31, 41]
provide surveys of some early image-segmentation evalua-
tion methods.

Different from these above methods, this paper presents a
benchmark for evaluating general-purpose image segmenta-
tion method on a large variety of real images. The work most
related to ours is the Berkeley image-segmentation bench-
mark [11]. The Berkeley benchmark contains more than
1000 various natural images. Since the ground-truth seg-
mentation may not be well and uniquely defined, each test
image in the Berkeley benchmark is manually segmented by
a group of people. Without any special guidance, such man-
ual segmentations reflect the general human perception and
therefore, different people usually construct different man-
ual segmentation on the same image. Particularly, different
people may partition an image into different number of seg-
ments, as illustrated in Fig. 1. The Berkeley benchmark col-
lects all different manual segmentations of an image as the
ground-truth segmentation, i.e., the ground-truth segmenta-
tion is non-unique. While this benchmark achieves good gen-
erality, it has some problems on the evaluation objectivity.
Given non-unique ground truths, this benchmark develops a
global consistency error (GCE) and a local consistency er-
ror (LCE) for measuring the segmentation accuracy. These
two measures tolerate unreasonable refinement of the ground
truth, i.e., if the segmentation is a refined version of the
ground truth, or vice versa, the segmentation error is zero.
Therefore, trivial segmentations, where each segment only
contains one pixel or the whole image is a single segment, al-
ways produce “perfect”100% segmentation accuracy in this
benchmark.

Different from the Berkeley benchmark, in this paper, a
single ground-truth segmentation is constructed for each test
image by extracting a salient structure from this image. We
thenonlycollect images with some identifiable salient struc-
ture into the benchmark. This way, it is easier to construct the
ground-truth segmentation and define the segmentation accu-
racy while the evaluation generality can still be well kept with
the large variety of the collected images. Particularly, with a
single ground-truth segmentation, the proposed benchmark
avoids the problem of tolerating unreasonable refinement in
the evaluation measures as in the Berkeley benchmark. The
contributions of this paper can be summarized as

1. By formulating the goal of image segmentation as ex-
tracting a salient structure from the image, a large vari-
ety of test images can be easily collected, and the man-
ual construction for ground-truth segmentation can be
easily performed. In this stage, we have collected1023
test images and constructed their ground-truth segmen-
tations.

2. With a single defined ground truth segmentation that
only consists of two segments, the segmentation perfor-
mance measure can be more robustly defined and used.
In this paper, we simply use the Jaccard coefficient [48]
as the performance accuracy measure. In fact, many
new measures developed in previous literatures, as dis-
cussed above, may also be adapted and used in the pro-
posed benchmark.

3. While image segmentation performance is highly de-
pendent on the number of produced segments, we in-
troduce a concept of “upper bound” performance in this
benchmark to better describe and address this problem.
Furthermore, this new concept allows the inclusion of
test images with multiple salient structures.

4. We apply the develop benchmark to evaluate five state-
of-the-art image-segmentation methods and obtain sev-
eral insightful observations.

3. Test-Image Database Construction
As the first stage of the benchmark construction, we col-
lected1023 real natural images from internet, digital photos,
and some well known image databases such as Corel. We
carefully examined each image before including it into the
database. A particular requirement is that each image con-
tains a salient foreground structure that is unambiguous in
human visual perception. This way, the ground-truth seg-
mentation can be easily constructed by manually extracting
the closed boundary of this salient structure. To make this
benchmark suitable for evaluating a large variety of image-
segmentation methods, color information is removed and all
the images are unified to256-bit gray-scale images in PGM
format, with a size in the range of80 × 80 to 200 × 200.

3



We hired two computer-science undergraduate students to
build this test-image database. They use the following strat-
egy to decide whether to include an image into the database.
First, both of them look at the considered image and select
the most salient structure independently. Second, if both
of them select the same structure without any reservation,
this image will be included into the database. Otherwise,
if they choose different structures or any one of them has
reservations in determining the most salient structure, this
image will not be included. After one image is decided to be
included into the database, they work together to construct
a single ground-truth segmentation by extracting the closed
boundary of the identified salient structure.

Figure 2: Nine sample images in our image database and the
ground truth produced manually.

Figure 2 demonstrates several sample images and their
ground-truth segmentations in the current image database.
Note that we intentionally collect images with various fore-
ground structures(such as human, animal, vehicle, building,
etc.) and various backgrounds. Also note that, in the col-
lected images, the salient structure may not be the only struc-
ture in the image, and the background may contain some
structures that are not as perceptually salient as the fore-
ground one. Certainly, the decision made by these two stu-
dents may not always be psychophysically consistent with
other people, i.e., some collected images, when presented to

other viewers, may still result in a different foreground struc-
ture. In Section 5, we will develop a special strategy to han-
dle this problem. With this special strategy, an image with
multiple salient structures can still be evaluated. The only
requirement is to pick one salient structure and label it as the
ground-truth foreground. We believe the ground truths con-
structed by these two students well satisfy this requirement.

4. Selected Image-Segmentation Meth-
ods

Based on the above benchmark, we evaluate the following
five image-segmentation methods:

• Normalized-cut method (NC) [16] implemented by Shi
and Malik [4].

• Efficient graph-based method (EG) [13] implemented
by Felzenszwalb and Huttenlocher [8].

• Mean-shift method (MS) [2] implemented by Comani-
ciu and Meer [3].

• Watershed method (WS) [22] (Matlab implmentation).

• Ratio-cut method (RC) [28] implemented by Wang et
al. [29].

Sample image segmentations resulting from these meth-
ods are shown in Fig. 3. We choose these five methods based
on three considerations: (a) they well represent differentcat-
egories of image-segmentation methods; (b) all of them are
relatively new methods and/or implementations that well rep-
resent the current state of the art of general-purpose image
segmentation; (c) the software implementations of these five
methods are publicly available. In the following, we briefly
overview these five methods.

Normalized-cut method (NC)[16, 4]. In NC, an image
is modelled by a graphG = (V, E), whereV is a set of ver-
tices corresponding to image pixels andE is a set of edges
connecting neighboring pixels. The edge weightw(u, v) de-
scribes the affinity between two verticesu andv based on
their intensity similarity and spatial proximity. Using this
graph model, segmenting an image into two segments corre-
sponds to a graph cut(A, B), whereA andB are the vertices
in two resulting subgraphs. In NC, the segmentation cost is
defined by

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
, (1)

wherecut(A, B) =
∑

u∈A,v∈B w(u, v) is the cut cost of
(A, B) andassoc(A, V ) =

∑

u∈A,v∈V w(u, v) is the asso-
ciation betweenA andV . NC segments the image by finding
the cut(A, B) with the minimum cost (1). Since this is a NP-
complete problem, a spectral-graph algorithm was developed
to find an approximate solution. This algorithm can be easily
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Figure 3: Sample image segmentation results using the six
selected methods at different parameter settings. (a) Original
image. (b) Ground truth. (c) EG segmentation. The eight
results (from left to right, from top to bottom) are obtained
by setting parameterS to 20%, 10%, 4%, 2%, 1%, 0.5%,
0.25%, and0.125% respectively. The segmentation parame-
ters are explained in Section 6.2. (d) MS segmentation. Pa-
rameterS is the same as the one in (c). (e) NC segmentation.
Parameterk is set to2, 5, 10, 20, 40, 80, 160, 320, respec-
tively. (f) Watershed segmentation. The varying parameteris
the Gaussian smoothing filter standard deviation40, 35, 30,
25, 20, 15, 10, 5. (g) RC segmentation. The number of re-
gions is set to1, 2, 3, 4, 5, 6, 7, and8 respectively. These
parameter settings are obtained from the experimental study
and will be discussed in Section 6.

repeated on the resulting subgraphs to get more segments. In
the NC method, the most important parameter is the number
of regions to be segmented. In our evaluation, we are going
to vary this parameter to measure its performance.

Efficient graph-based method (EG) [13, 8]. Similar
to NC, EG adopts a graph model and finds the evidence
of a boundary between two segments based on the inten-
sity differences across the boundary and the intensity differ-
ences within each segment. However, the intensity differ-
ence within a segment is defined as the largest edge weight
of the minimum spanning tree built from this segment, and
the intensity difference across the boundary is defined as the
minimum edge weight that connects these two segments. EG
takes onlyO(n log n) computational time to segment ann-
pixel image. In the adopted implementation [8], there are
three free parameters: a smoothing factorσ that is related to
the Gaussian smoothing scales, a constant parameterK that
controls how coarsely or finely an image is segmented, and a
parameterS that constrains the minimum area of the result-
ing segments. VaryingS usually results in different number
of segments. In our evaluation, we fix the smoothing fac-
tor σ to its default value and varyK andS to measure the
segmentation performance.

Mean-shift method (MS) [2, 3]. MS is a data cluster-
ing method that searches for the local maximal-density points
and then groups all the data to the clusters defined by these
maximal-density points. When used for image segmentation,
each pixelxi, i = 1, ..., n in the image is treated as an input
data and the density at pointx is estimated by

f̂(x) =
c

nhd

n
∑

i=1

K

(

∥

∥

∥

∥

x − xi

h

∥

∥

∥

∥

2
)

,

whereh is the bandwidth parameter,d is the data dimension-
ality, c is a normalization constant, andK(·) is the density
estimation kernel. In the implementation of the mean-shift
method [3], the uniform kernel is used. To locate a local
maximum of the density, an initial pointy1 is selected and
then successively updated by

yj+1 =

∑n
i=1 xiK

(

∥

∥

∥

yj−xi

h

∥

∥

∥

2
)

∑n
i=1 K

(

∥

∥

∥

yj−xi

h

∥

∥

∥

2
)

until convergence. With these local maximal-density points,
the image can be segmented into regions by grouping each
pixel to its corresponding local maximal-density point. In
the adopted implementation [3], there are mainly three free
parameters: the spatial bandwidthHs, the range bandwidth
Hr, and the minimum segment areaS which has the same
meaning to the one in EG. Since all the test images in our
benchmark are gray-level images, the range bandwidthHr,
which is mainly related to the color channels, is fixed to its
default value. The bandwidthHs determines the resolution
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in selecting the local maximal-density points. In other words,
Hs controls the number of resulting segments.

Ratio-cut method (RC) [28, 29]. RC is another graph-
based image-segmentation method. Like in NC, an image
is modelled by a graphG = (V, E) in RC, whereV is a
set of vertices corresponding to image pixels andE is a set
of edges connecting neighboring pixels. Particularly, the4-
connectivity neighboring system is used in edge construction
to makeG a planar graph. The edge weightw(u, v) is de-
fined in similar way to the ones defined in NC os that it de-
scribes the affinity between two verticesu andv based on
their intensity similarity and spatial proximity. Then theim-
age segmentation is formulated as finding a graph cut(A, B)
to minimizes the segmentation cost

Rcut(A, B) =
cut(A, B)

assoc(A, B)
, (2)

wherecut(A, B) andassoc(A, B) are defined in the same
way as in NC. RC segments the image by finding the cut
(A, B) with the minimum cost (2). In [28], a polynomial-
time algorithm is developed to find the minimum-cost ratio
cut in a globally optimal fashion. Similar to NC, this algo-
rithm can be repeated on the resulting subgraphs to get more
segments. The most important parameter is the number of
regions to be segmented. In our evaluation, we are going to
vary this parameter to measure its performance.

Watershed method (WS) [25, 22].
Watershed method, also called watershed transform, is an

image segmentation approach based on mathematical mor-
phology. In geography, a watershed is the ridge that divides
areas drained by different river systems. By viewing an im-
ages as a geological landscape, the watershed lines deter-
mine the boundaries that separate image regions. In the to-
pographic representation of an imageI, the numerical value
(i.e., the gray tone) of each pixel stands for the elevation at
this point. The watershed transform computes the catch-
ment basins and ridge lines, with catchment basins corre-
sponding to image regions and ridge lines relating to region
boundaries. Methods for computing the watershed trans-
form are discussed in detail in [22, 30]. In our evaluation,
we use the watershed-transform function of Matlab 7. How-
ever, the Matlab implementation of the watershed transform
is very sensitivity to image noise and usually produces over-
segmented regions. To solve this problem, we first smooth
images with Gaussian smoothing filters of different scales
before applying the watershed transform. By varying the pa-
rameter of Gaussian filters, we can segment an image into a
target number of regions.

5 Performance Measure

To evaluate segmentation using this benchmark, the most
desirable form of segmentation output is certainly a figure-
ground-style segmentation, i.e., the image is partitionedinto

two segments with one as the foreground and the other as
the background. However, in most cases, the segmentation
methods produce more than two regions. All the methods
partition an image into a set of disjoint segments without la-
belling the foreground and background. Consequently, we
develop a region-merging strategy so that they can be fairly
evaluated in the benchmark.

Suppose the segments in an imageI are
{R1, R2, . . . , Rn}. Ri ∩Rj = ∅ for i 6= j, and∪n

i=1Ri = I.
In this case, the ground-truth foreground segment corre-
sponds to a subset of the disjoint segments. To evaluate these
methods in our benchmark, we apply a strategy to merge
the segments and then use the merged region as the detected
foreground object. For each segmentRi in an image, we
count it into the foregroundR if it has more than50 percent
overlap with the ground-truth foregroundA in terms of the
area, i.e.,

R =
⋃

i:ρ(Ri,A)>0.5

Ri.

where

ρ(Ri, A) = max

{

|Ri ∩ A|

|Ri|
,
|Ri ∩ A|

|A|

}

.

An example of using this merging strategy for performance
evaluation is illustrated in Fig. 4.

(a) (b) (c)

Figure 4: An illustration of evaluating an image segmentation
result in the proposed benchmark: (a) an image-segmentation
result; (b) the boundary of the ground-truthsegmentation (the
thick curve) overlapped on the segmentation result; (c) the
figure-ground segmentation (the thick curve) derived using
the proposed region-merging strategy.

Note that in the merging process, we find the best subset
of image segments with the assumption that the ground-truth
foreground objectA is known. But in real applications, the
foreground is not known beforehand. In this sense, by as-
suming that an ideal merging post-process always exists, the
evaluation based on this strategy in fact represents an upper
bound performance.

This strategy is particularly useful in addressing another
important problem mentioned in Section 1 — Many real im-
ages contain multiple salient structures in which the most
salient one may not be unambiguously defined from the hu-
man perception. Using this strategy, we can still include such
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images into the database and simply label one salient struc-
ture to construct the ground truth. The basic assumption un-
derlying this evaluation strategy is that a good segmentation
method should be able to detect a specified salient structure
in an image even if this image contains multiple salient struc-
tures.

The basic performance measure we implement for this
benchmark is Jaccard coefficient [48], which measures the
region coincidence between the segmentation result and the
ground truth. Specifically, let the regionA be the ground-
truth foreground structure and the regionR be the merged
segments derived from the segmentation result using the
region-merging strategy. We define the region-based seg-
mentation accuracy as

P (R; A) =
|R ∩ A|

|R ∪ A|
=

|R ∩ A|

|R| + |A| − |R ∩ A|
, (3)

where | · | is the operation of computing the region area.
Different from the region-coincidence-based GCE and LCE
measures used in the Berkeley benchmark, this measure has
no bias to the segmentations that produces overly large or
small number of segments. The numerator,|R ∩ A|, mea-
sures how much the ground-truth structure is detected. The
denominator,|A ∪ R|, is a normalization factor which nor-
malizes the accuracy measure to the range of[0, 1]. With this
normalization factor, the accuracy measure penalizes the er-
ror of detecting irrelevant regions as the foreground segments
(false positives). This region-based measure is insensitive to
small variations in the ground-truth construction and incor-
porates the accuracy and recall measurement into one unified
function: This measure involves both false positives and false
negatives. Fig. 5 shows sample segmentation results and their
segmentation accuracy using the proposed strategy.

Note that the segmentation accuracy mentioned above
only provides anupper-bound of the segmentation perfor-
mance by assuming an ideal postprocessing step of region
merging. Note that this upper-bound performance may not
be achieved or even approached in real applications, where
the ground truth is nota priori known. In general, the upper-
bound performance calculated using this strategy is useful
only when the total number of segments,n, is small. For the
extreme case where each pixel is partitioned as a segment, the
upper-bound performance obtained is a meaningless value of
100 percent. This is a little similar to the GCE and LCE
measures developed in the Berkeley benchmark. But the
difference is that GCE and LCE also result in meaningless
high accuracy when too fewer segments are produced, such
as the case where the whole image is partitioned as a single
segment. In this paper, we always set the segmentation pa-
rameters to produce a reasonably small number of segments
when applying the strategy to merge the image regions. For
simplicity, we always refer to “upper-bound performance” as
“performance” in later sections when there is no confusion.

6. Evaluation Results

In this section, we empirically evaluate the performance of
NC, EG, MS, WS, and RC on the proposed benchmark. We
first show and compare the performance of these methods
and the effects of their respective parameters. Then we show
the relation between the performance and the number of seg-
ments in each method. We also reveal correlation among
these methods and investigate the performance by choosing
the best segmentation method (out of these five methods) for
each individual image.

6.1 Performance Curve

In this section, we show the segmentation performance using
a cumulative-performancehistogram curvep(x) : [0, 1] →
[0, 1] (or performance curvein short), which describes the
performance distribution on all1023 images. In this curve,
x represents the proportion of images, andp(x) indicates the
segmentation accuracy defined in Sections 5. A specific point
(x, p(x)) along this curve indicates that100 · x percent of
the images are segmented with an accuracy lower thanp(x).
Equivalently, this also means that100 · (1 − x) percent of
the images produce segmentations with accuracy better than
p(x). Using a new segmentation method or a segmentation-
parameter setting certainly will produce a new performance
curve. Clearly, the higher a performance curve in the Carte-
sian coordinate system, the better the performance of the cor-
responding segmentation method and the parameter setting.

In this section, we also show the average performance
p̄ on all 1023 images in some tables. From the perfor-
mance curve, the average performance can be derived by
p̄ =

∫ 1

0 p(x)dx, andp(0.5) is the median performance on
all images. Clearly, thecumulative-performancehistogram
curvep(x), 0 ≤ x ≤ 1, describes the performance distri-
bution on all images and therefore conveys more informa-
tion than the average performancep̄. The performance curve
is continuous and monotonically non-decreasing. Two seg-
mentation methods can have the same average performance
but drastically different performance curves.

6.2 Segmentation Performance with Varied
Parameter Settings

Efficient-graph method (EG).The EG has two main param-
eters:K, which controls the splitting process of a segment,
andS, which constrains the minimum area of each resulting
segment. Table 1 shows that the parameterK affects the per-
formance less thanS does and the most appropriate value of
K appears to be100. For all tested values ofK, the average
performancēp increases as the minimum region areaS de-
creases. However, whenS gets very small,̄p reaches a limit
and cannot be improved any further. We can find in Table 1
thatS is the dominant parameter in EG.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Sample image segmentation results and their performance values. (a) Original image; (b) ground-truth segmentation;
(c)-(f) Segmentation results with different performances. In (c)-(f), the background regions are shown as white regions; the
detected object regions are shown as the whitened original image; the boundaries of the regions are shown as black lines in the
figure. The accuracy of segmentation results in (c)-(j) is0.5, 0.7, 0.8, and0.9, respectively.

Figure 6 (a) shows the performance curves resulting from
variedS. The parameterK is fixed as100. To makeS in-
variant to the image size, we redefineS to be the ratio of the
minimum allowed segment area to the total image area. We
can clearly see the limit ofp(x) resulting from the decreased
S. Even when we setS to be the minimal valueSmin that al-
lows single-pixel segments,p(x) 6≡ 1 because the parameter
K keeps an image from being overly-segmented into indi-
vidual pixels. In fact, we found that, whenS is set to be the
minimal value, the average number of produced segments in
an image is around500, which is too many for most appli-
cations. Figure 6 (a) also shows that, whenS < 1% (of
the image area, as redefined above), the performance curve
p(x) moves up only marginally with the decreasing ofS. Ta-
ble 1 and Figure 6 (a) suggest that an appropriate value ofS

is 1% and the performance curvep(x) well approaches the
limit whenS = 0.25%. In that case, the expected number of
produced segments is60.

Mean-shift method (MS).The MS method has two main
parameters: the level of resolutionHs and the minimum al-
lowed segment areaS. Similar to the EG,S is measured as
the percentage of the image area. Table 2 shows the average
performancēp when setting different values forHs andS. It
indicates that the minimum allowed segment areaS affects
the performancēp much more thanHs does. Better perfor-
mance can usually be achieved whenHs is 1. Similar to EG,
there exists a performance limit in MS because other parame-
ters prevent an image to be segmented into individual pixels.
Figure 6 (b) shows the performance curvesp(x) with varied
S and a fixedHs = 1. Particularly, the performance curve
p(x) reaches the limit when the average number of produced
segments is more than2000. When the average number of
produced segments gets over24 (corresponding toS < 1%),
the performance curve moves up much more slowly. This
suggests that, in this benchmark, it is appropriate to produce
10 − 100 segments when using MS, with a reasonable value
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Figure 6: The performance curves of the five image-segmentation methods on the1023 images in the database. (a) Efficient
Graph (EG); (b) Mean-Shift (MS); (c) Normalized Cut (NC); (d) Watershed (WS); (e) Ratio Cut (RC). In (a) and (b), the
parameter is the minimum allowed segment areaS. In (d), the parameter isσ in Gaussian filters. In (e), the varied parameter
is the target number of regions. In (c) and in the parenthesisof other subfigures, we show the average number of regions
corresponding to the parameters.
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ParameterS: The minimum allowed segment area measured as the percentage of the image area
ParameterK 50% 20% 10% 4% 2% 1% 0.5% 0.25% 0.125% 0.06% Smin

100 0.26 0.33 0.44 0.58 0.68 0.76 0.82 0.85 0.87 0.89 0.90
300 0.26 0.33 0.45 0.60 0.68 0.74 0.77 0.79 0.80 0.80 0.81
500 0.26 0.35 0.46 0.60 0.66 0.70 0.72 0.73 0.74 0.74 0.75

1000 0.26 0.36 0.46 0.55 0.58 0.59 0.61 0.61 0.62 0.62 0.63

Table 1: The average performance of EG (on all1023 images) at different parameter settings.Smin indicates the minimal value
corresponding to the case of allowing single-pixel segment.

ParameterS: The minimum region area (measured as the percentage of the image area)
ParameterHs 50% 20% 10% 4% 2% 1% 0.5% 0.25% 0.125% 0.06% Smin

1 0.26 0.40 0.50 0.58 0.63 0.67 0.70 0.73 0.74 0.76 0.81
3 0.26 0.40 0.50 0.59 0.63 0.67 0.70 0.72 0.74 0.75 0.77
7 0.26 0.40 0.50 0.60 0.65 0.69 0.71 0.72 0.73 0.74 0.76

10 0.26 0.41 0.51 0.61 0.66 0.69 0.71 0.72 0.72 0.73 0.76

Table 2: The average performance of MS at different parameter settings.Smin indicates the minimal value corresponding to
the case of allowing single-pixel segment.

of 40.
Normalized-cut method (NC). In NC, we vary the pa-

rameterk, the target number of segments. The maximum
possible value ofk is the total number of pixels; in that case
p(x) ≡ 1, x ∈ [0, 1]. As shown in Fig. 6(c), while the curve
p(x) moves up (not surprisingly) ask increases, it does not
move up in a linear way in terms of the increase ofk. The
largest move-up ofp(x) happens whenk increases from2 to
5, and after that the move-up ofp(x) is not substantial even
if we increasek logarithmically. While a largerk improves
the upper-bound performancep(x), such an upper-bound be-
comes more difficult to achieve because of the required post-
processing of region merging. Thus we need to find an ap-
propriatek by seeking a compromise. From the experimental
results shown in Fig. 6 (c), we suggest selectingk to be less
than160, with 40 being the expected value when using NC
on this benchmark.

Watershed method (WS).The watershed transform usu-
ally leads to over-segmentation of images due to image
noise and other local irregularities. To overcome this prob-
lem, researchers have proposed many strategies such as re-
gion merging [24], marker-controlled watershed segmenta-
tion [25, 22], hierarchical segmentation [27], and multi-scale
segmentation [26]. In our evaluation, we use the MATLAB
function of watershed transform. To achieve segmentations
with different number of segments, we adopt a strategy that
is similar to that of the multi-scale segmentation [26]: Be-
fore the watershed transform, each image is smoothed us-
ing a Gaussian filter of different scales. This preprocessing
suppresses image noise and reduces the number of segments
produced by the watershed transform. In the Gaussian fil-
ters, we vary the filter sizeN and the standard variationσ.

Particularly, we setN = ⌊ 8
5σ⌋ + 1 and Fig. 6 (d) shows the

performance of the WS with different Gaussian smoothing
filters.

Ratio-cut method (RC).The ratio-cut package [29] con-
tains several parameters. In our experiment, we first use the
default parameters to get a segmentation that is usually an
over segmentation of the input image. In this process, the
ratio cut algorithm iteratively partitions a segment into two
sub-segments until the ratio-cut cost is larger than a given
threshold. The allowed range for this threshold is0 − 765
and the default value of this threshold is735. In this package,
an iterative region-merging algorithm is developed to reduce
the number of segments; the merging criterion is as defined
in Eq.2. The varied parameter for ratio cut in our experi-
ment is the target number of segments for merging. Note that
in practice, we may not get the target number of segments
through merging in some images where the initial number
of segments is smaller than the target number. In our exper-
iment, we vary this target number in the range of2 − 320
and find that the actual obtained average number of segments
on all 1030 images are correspondingly varied in the range
2 − 102, as shown in Fig. 6 (e).

6.3 Performance Comparison

6.3.1 Comparison of the average performance

We first compare the average performance of different image-
segmentation methods. To make a fair comparison, we com-
pare the average performance when images are segmented
into the same number of segments. Table 3 shows the aver-
age performancēp of these methods in terms of the number
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of produced segments. For EG and MS, the number of pro-
duced segments are controlled by the parameterS, i.e., the
minimum allowed segment area. Therefore, we continuously
varyS to achieve segmentation with different number of seg-
ments. For NC, we directly control the number of segments
for each image. For MS, we vary the Gaussian smoothing fil-
ter to achieve the target number of regions. For RC, we vary
the variable of target number of regions for each image.

Number of segments EG MS NC WS RC

5 0.52 0.46 0.58 0.28 0.46
10 0.65 0.57 0.70 0.30 0.52
20 0.76 0.66 0.78 0.38 0.59
40 0.83 0.71 0.82 0.47 0.67
80 0.87 0.73 0.85 0.54 0.76

Table 3: Comparison of the average performance of five im-
age segmentation methods.

From Tables 3, we can see that, in the proposed bench-
mark, the average performance of the four methods (EG,
MS, NC, RC) are saliently better than WS for all the selected
number of segments. The performance of the EG, MS, NC,
and RC are very close, although the EG and NC methods are
slightly better than MS and RC in performance. For all these
five methods, the average performance increases with the in-
crease of image segments. However, as mentioned above,
this performance shown here is an upper-bound one: with
the increase of the resulting segments, this upper-bound per-
formance becomes much more difficult to reach through re-
gion merging. From this perspective, the upper-bound per-
formance derived from over-segmentation (more than100
segments) is largely meaningless.

6.3.2 Performance vs. the number of segments

To further investigate the relation between the performance
and the number of segments, we evaluated the average per-
formance of the methods when different number of segments
are produced. Figure 7 shows the trend of the average per-
formance with the increase of the number of segments. We
have two observations here: (a) A trade-off exists between
the number of segments and the segmentation performance.
Although the average performance is always monotonically
increasing in all five methods, their increase speeds decrease
when the number of segments gets big. For example, when
the number of segments increases from100 to 300 in NC
method, the average performance only increases by less than
0.03. Such an increase is almost meaningless, since an in-
crease of200 segments makes the postprocessing of region
merging much more difficult and therefore, this0.03 increase
of the upper-bound performance may not be achieved at all
in practice. (b) There exists a performance limitation in
some segmentation methods. Theoretically, when each pixel

is partitioned as a segment, a perfect performance of1.0 is
achieved. However, most image segmentation methods do
not allow such trivial segmentation. For example, in EG,
even when the minimum allowed segment is set to be1 pixel,
the parameterK prevents each pixel from being partitioned
as a separate segment.

In Fig. 7, we can also see that the NC method is slightly
better than the other methods when less than30 segments are
produced. When30 − 100 segments are produced, the per-
formance of the EG and NC are close, and are better than the
performance of the other methods. As mentioned above, we
usually have little interest when more than100 segmentation
are produced. Table 3 and Fig. 7 also suggest the appropriate
choices of the segmentation parameters. It shows that, for the
images in this benchmark, EG, MS, and NC all reach reason-
ably good performance when images are segmented into no
more than80 segments. The experimental results show that
the appropriate range of the number of segments is10−100.
Particularly, around40 segments are expected to be the tar-
get for EG, MS, and NC. The performance curve of the RC
appears to be more linear, and an appropriate number of seg-
ments is100.

From Table 3 and Fig. 7, we can surely draw the con-
clusion that the segmentation problem defined in this paper,
i.e., separating one specified salient structure from the back-
ground when partitioning an image into a relatively small
number of segments, is far from solved with the state-of-
the-art segmentation methods. Note that the performances
discussed in above are still the upper bounds that are usu-
ally difficult to reach in real applications. Also be reminded
that these1023 images are carefully examined beforehand so
that the human visual system is able to unambiguously ex-
tract the single ground-truth foreground structure. From this
perspective, we can see that there is still a long way to go
to solve the general-purpose segmentation, where the ground
truth may not be well defined.

6.3.3 Comparison of winning cases

To better compare the relative performance of different
image-segmentation methods, we also count the number of
images on which one method outperforms the others. For
example, if NC achieves the best performance on an image
Ij , we consider NC the winner onIj . For each method, we
choose the best parameter setting from all the parameters we
tested. We then count the number of winning images of each
segmentation method and show the result in Table 4.

From Tables 3 and 4, we can see that when less than10
segments are produced, NC wins the most times among the
five methods. When targeting for more than10 segments, EG
wins more times than the other methods. Since the average
performance of EG is very close to that of NC, it indicates
that EG may win only marginally on most images. WS wins
the least times and has the worst performance. Basically, for
EG, MS, NC, and RC, there is no strong evidence (based
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Figure 7: The average performance of the five image segmentation methods in terms of the number of segments.

Number of segments EG MS NC WS RC

5 292 189 325 67 150
10 258 197 379 18 171
20 321 205 296 12 189
40 381 206 223 5 208
80 416 213 186 1 207

Table 4: The number of winning times of each method in
terms of the number of produced segments.

on Table 3 and Table 4) showing that one specific method
is apparently superior to the others. In fact, their average
performances are very similar when the number of segments
is 80.

Several other reasons prohibit us from ranking the five
segmentation methods: (a) Most performances listed here
are estimations of upper bounds. Whether we can reach or
approach the upper bound largely depends on specific ap-
plications; (b) Many methods are not especially developed
for figure-ground-style segmentation formulated in this pa-
per. Their performance may still be significantly improved if
they are tuned to the figure-ground segmentation.

6.4 Combination of Image Segmentation
Methods

Besides evaluating and comparing the performance of indi-
vidual image-segmentation method, it is also important to
know whether and how these methods are statistically re-
lated. If these five methods can complement each other, then
it would be worthwhile for researchers to further investigate
ways to boost the performance by combining them. To bet-
ter understand the correlation of these methods, we pick the
best method (out of the five test methods) for each individual
image and investigate the performance. We call this virtual
method as the “combined method” and its performance as
the “combined performance”. This combined performance
indicates the best performance we can get by “ideally” com-
bining these five methods. Therefore, it is the upper-bound
performance of these five methods. Note that this “combined
method” is not a real method and cannot be implemented
in practice because it requires the ideal selection of the best
method for each image. In this paper, we introduce the con-
cept of the “combined method” for the only purpose of inves-
tigating the upper bound performance of these five methods.

In combining the five methods, we specify the the num-
ber of segments. Figure 8(a-d) shows the performance of
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this combined method when the resulting segments are5, 10,
20, and40, respectively. We can see that the performance
of this “ideal” combined method is not much better than that
of each individual method. Especially when the number of
segments gets big, e.g.,40, the performance gain by combin-
ing the methods is marginal. These results indicates that the
combination of different image-segmentation methods does
not substantially boost the the segmentation performance.

7. Contribution and Conclusions
In this paper, we presented a new benchmark for evaluating
image segmentation. In this benchmark, image segmentation
is evaluated according to its capability of separating a spec-
ified salient structure from the background with a relatively
small number of segments. We find a large variety of im-
ages that satisfy the requirements of this benchmark to guar-
antee the generality, and construct ground-truth segmenta-
tions to guarantee the objectivity. We develop a new strategy
and a new concept of “upper-bound” performance to address
the problems that many images may contain multiple salient
structures and that many image-segmentation methods may
partition an image into more than two segments. Currently,
we have collected1023 natural images for this benchmark.
In this paper, we applied this benchmark to evaluate the per-
formance of five state-of-the-art image-segmentation meth-
ods: the efficient graph-based method (EG), the mean-shift
method (MS), the normalized-cut method (NC), the water-
shed method (WS), and the ratio-cut method (RC). we got
the following observations and conclusions from the experi-
ments.

1. Among the methods and the implementations we tested
in the evaluation, WS has the worst performance using
the proposed benchmark.

2. The performances of the EG, MS, NC, and RC are
close. When less than10 segments are produced, NC
is slightly better than the other methods. When more
than10 segments are produced, the performance of the
EG is marginally better than that of the other methods.
But the performance differences among them are very
small, and there is no obvious winner.

3. The experimental results provide useful information of
parameter selection in these image segmentation meth-
ods. For all the five methods, the target number of seg-
ments should be in the range of10− 100, with 40 being
a typical number for EG, MS, and NC, and100 being
the expected number for RC.

4. There is no strong evidence showing that these segmen-
tation methods complement each other. Therefore, a
combination of them may not significantly boost the
performance.

This benchmark provides a new perspective to quanti-
tatively evaluate image-segmentation methods. However,
our experiments show that general-purpose segmentation is
still far from a solved problem even with the state-of-the-
art methods. We make this benchmark available to other
researchers1 and hope it will help evaluate new image-
segmentation methods.
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