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Graph-Cut Methods for Grain 
Boundary Segmentation

Song Wang, Jarrell Waggoner, and Jeff Simmons

How would you…
…describe the overall significance 
of this paper?

This paper introduces new methods 
for accurately and automatically 
segmenting the grain boundaries 
from various material images, 
which can substantially facilitate 
the modeling and analysis of the 
material microstructure, and shorten 
the period of design and development 
of new materials. 

…describe this work to a 
materials science and engineering 
professional with no experience in 
your technical specialty?

In this paper, we suggest the use 
of graph-cut methods for material 
image segmentation. In these methods, 
an image is modeled by a graph 
which considers both intensity and 
spatial relations of the pixels. New 
approaches are also introduced to 
enforce the segmentation continuity 
between neighboring slices in a 
sequence of 2-D serial sections.

…describe this work to a layperson?

Of great importance in studying 
materials is to extract the boundaries 
of the microstructures that make 
up a material. This process, called 
segmentation, is often done by 
hand, or with various rudimentary 
software tools on various material 
images. In this paper, we describe 
more advanced graph-cut methods 
recently investigated in the computer 
vision community for automatic 
microstructure segmentation.

This paper reviews the recent prog-
ress on using graph-cut methods for 
image segmentation, and discusses 
their applications to segmenting grain 
boundaries from materials science im-
ages. 

IntroDuCtIon

The size and shape of crystals (i.e., 
grains) in polycrystalline materi-
als (e.g., metals and metal alloys) are 
among the strongest determinants of 
many material properties, such as me-
chanical strength or fracture resistance. 
In materials science research, the 
emerging practice involves construct-
ing three-dimensional (3-D) models 
of the grain structure and then apply-
ing finite element modeling to infer the 
mechanical properties from that struc-
ture.1,2 Accurately and automatically 
segmenting the grain boundaries from 
various material images can substan-
tially facilitate the modeling and analy-
sis of the material microstructure, and 
shorten the period of design and devel-
opment of new materials. 

Image segmentation is a fundamen-
tal problem in computer vision and im-
age processing. In past decades, many 
image segmentation algorithms and 
tools have been developed and are used 
to process images in different domains, 
such as pictures taken indoors and out-
doors, aerial images, medical images, 
and videos. Particularly, graph-cut 
methods for image segmentation have 
attracted tremendous interest in the 
computer vision community in recent 
years. Compared to classical image-
segmentation methods, such as edge 
detection, region splitting/merging, 
and pixel clustering, graph-cut meth-
ods are more “global” by considering 
well-defined, comprehensive segmen-
tation cost functions and seeking their 

globally optimal solutions using ad-
vanced graph theory. 

GraPh anD MInIMuM Cut 

 In graph-cut methods, a graph G 
=(V, E) with vertices V and edges E is 
first constructed to represent an image. 
Considering a two-dimensional (2-D) 
image, we can construct a vertex for 
each pixel and an edge between two 

vertices corresponding to two neigh-
boring pixels, as shown in Figure 1. A 
graph cut divides the graph into two 
subgraphs G

1
 and G

2
 by removing all 

the edges connecting G
1
 and G

2
. Two 

examples are shown in Figure 1b and 
d, where the removal of the edges inter-
sected by the dashed curve constitutes a 
graph cut. A graph cut corresponds to a 
segmentation boundary (either open or 
closed) in the image. Multiple-region 
image segmentation can be obtained by 
repeated graph cuts on the subgraphs 
G

1
 and G

2
. 

 Image-intensity information is typi-
cally encoded into an edge-weight 
function w(u, v), where (u, v) ∈ E. For 
example, we can define w(u, v) as a 
decreasing function of the intensity dif-
ference between vertices (pixels) u and 
v. This way, a graph cut that removes 
low-weight edges is more preferred 
for image segmentation. In graph-cut 
methods, the two central problems are: 
1) defining a cost function for each pos-
sible graph cut to reflect the aforemen-
tioned preference, and 2) developing 
a graph algorithm to find the optimal 
graph cut that minimizes this cost func-
tion. In Reference 3, the cost function 
is defined to be the total weight of the 
removed edges, i.e.  

 This is the well-known minimum cut 
problem, and its global optima can be 
efficiently found by the min-cut max-
flow algorithm. However, image seg-
mentation using minimum cut has a 
bias toward producing shorter bound-
aries.3

GraPh CutS wIth  
norMaLIzeD CoStS 

Various kinds of normalization have 
been incorporated in graph-cut cost 



JOM • July 201150 www.tms.org/jom.html

functions to reduce the bias toward 
producing shorter boundaries. Shi and 
Malik4 developed a normalized-cut ap-
proach with a cost function

 
which favors two subgraphs with simi-
lar total edge weights and, therefore, 
avoids producing overly short bound-
aries. Finding the globally optimal 
normalized cut is a computationally 
intractable NP-hard problem. In prac-
tice, an approximate solution can be 
obtained using spectral graph theory, 
by relaxing this discrete optimization 
problem to the continuous domain.

Wang and Siskind5 developed a ra-
tio-cut approach with a cost function

where #(G
1
,G

2
) is the number of edges 

connecting G
1
 and G

2
. This reflects the 

average weight along a cut boundary 
and, therefore, reduces the bias toward 
short boundaries. The globally optimal 
ratio cut can be found efficiently in 
polynomial time. Figure 2 shows sam-
ple segmentation results using normal-
ized cut and ratio cut. 

Similar to normalized cut is the 
average-cut approach,6 where the size 
of subgraphs G

1
 and G

2
 is used for nor-

malization. Finding the optimal aver-
age cut is NP-hard and an approximate 

solution can be obtained using spectral 
graph theory. Cox, Rao, and Zhong7

developed a ratio-region approach for 
image segmentation, which handles 
only the closed-cut boundary as shown 
in Figure 1d and uses the area within 
the closed-cut boundary for normaliza-
tion. Jermyn and Ishikawa8 extended 
the ratio-region approach by consider-
ing region information other than the 
area. The optimal ratio region and its 

extension in Reference 8 can be found 
efficiently in polynomial time. Many 
other graph-cut methods have also 
been developed for image segmenta-
tion.9–12

SeGMentatIon wIth  
a teMPLate 

Many materials science images are 
in the form of a sequence of 2-D se-
rial sections (i.e., slices). The grain 
structure between neighboring slices 
usually shows good consistency and 
continuity. Therefore, we can use the 
segmentation of one slice as a template 
to guide the segmentation of its neigh-
boring slices. Graph-cut methods, par-
ticularly minimum cut, can be used for 
this purpose. 

Specifically, image segmentation 
can be formulated as an assignment of 
labels to each pixel where the pixels 
with the same label constitute a seg-
ment. In References 13 and 14, the ob-
jective of optimal labeling is to find a 
labeling function, f, by minimizing the 
cost function 

where P is the set of image pixels, f
p
 is 

the label of pixel p ∈ P, and N is the set 

a b

c d

Figure 1. Image segmentation and graph cuts. (a) An image segmented by an open bound-
ary. (b) The graph model for (a) and the graph cut for its segmentation boundary. (c) An 
image segmented by a closed boundary. (d) The graph model for (c) and the graph cut for 
its segmentation boundary. 

a b c

Figure 2. Segmentations on a (a) (cropped) Ni-based alloy image using (b) normalized cut 
and (c) ratio cut. 

Figure 3. Segmentation of a (cropped) Ni-based alloy image by optimal labeling. (a) Seg-
mented grain boundaries in a template slice. (b) Grain boundaries in (a) copied to a new 
slice. (c) Segmented grain boundaries in this new slice after optimal labeling.

a b c
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of pixel pairs that are neighbors in the 
image. The data term D

p
(f

p
) describes 

the cost of assigning label f
p
 to pixel p

and the smoothness term V
pq

(f
p
,f

q
) de-

scribes the cost of assigning labels f
p

and f
q
 to two neighboring pixels p and 

q, respectively. Finding the globally 
optimal labeling that minimizes this 
cost function is NP-hard. However, the 
minimum graph-cut algorithm can be 
used to obtain a locally optimal label-
ing effi ciently. 

In this optimal labeling framework, 
we can define a specialized data term 
and smoothness term to enforce the 
grain structure consistency when prop-
agating an image segmentation from 
one slice to another. For example, in 
defining the data term, we can set an 
infi nity cost D

p
(f

p
) when label f

p
 is not 

assigned to any pixel near p in the tem-
plate. In defining the smoothness term, 
we can set an infinity cost V

pq
(f

p
,f

q
) if 

the segments with labels f
p
 and f

q
 are 

not adjacent in the template. Figure 3c 
shows a sample segmentation result us-
ing this method. Various kinds of hu-
man interaction, such as the selection 
of seed points for individual grains, 
can be effectively and conveniently in-

tegrated into this framework.15

ConCLuSIon 

Graph-cut methods have been suc-
cessfully used in many image-segmen-
tation applications. Compared with 
other image segmentation methods, 
graph-cut methods employ global cost 
functions, attempt to find globally op-
timal solutions to these cost functions, 
and have the capability of considering 
both image information, such as inten-
sity, and structure information, such 
as a template. These properties make 
graph-cut methods a very promising 
solution to the challenging problem of 
grain boundary segmentation. 
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