
 ILOG AMPL CPLEX System
Version 7.0 User’s Guide

Standard (Command-line) Version
Including CPLEX Directives

AMPL User Guide copyright © 2000 by ILOG, Inc.

The AMPL Modeling System software is copyrighted by Bell Laboratories and is
distributed under license by ILOG, Inc.

CPLEX® is a registered trademark of ILOG.

ILOG
889 Alder Avenue, Suite 200
Incline Village, NV 89451, USA
Phone (775) 831 7744
Fax (775) 831 7755

Internet:
Product information http://www.ilog.com/products/ampl/
Email info@ilog.com

AMPL User Guide i

Contents

1 INTRODUCTION... 1

1.1 WELCOME TO AMPL.. 1
1.2 USING THIS GUIDE.. 1
1.3 INSTALLING AMPL... 2

1.3.1 Requirements... 2
1.3.2 Unix Installation ... 2
1.3.3 Windows Installation... 3
1.3.4 Licensing ... 3
1.3.5 Usage Notes .. 4
1.3.6 Installed Files.. 4

2 USING AMPL ... 7

2.1 RUNNING AMPL... 7
2.2 USING A TEXT EDITOR .. 7
2.3 RUNNING AMPL IN BATCH MODE.. 8

3 AMPL-SOLVER INTERACTION.. 9

3.1 CHOOSING A SOLVER .. 9
3.2 SPECIFYING SOLVER OPTIONS... 9
3.3 INITIAL VARIABLE VALUES AND SOLVERS .. 10
3.4 PROBLEM AND SOLUTION FILES.. 11

3.4.1 Saving Temporary Files .. 11
3.4.2 Creating Auxiliary Files.. 12

3.5 RUNNING SOLVERS OUTSIDE AMPL... 13
3.6 USING MPS FILE FORMAT .. 14
3.7 TEMPORARY FILES DIRECTORY .. 14

4 CUSTOMIZING AMPL... 17

4.1 COMMAND LINE SWITCHES... 17
4.2 PERSISTENT OPTION SETTINGS.. 18

5 USING CPLEX WITH AMPL... 19

5.1 PROBLEMS HANDLED BY CPLEX... 19
5.1.1 Piecewise-linear Programs... 19
5.1.2 Quadratic Programs ... 20

5.2 SPECIFYING CPLEX DIRECTIVES .. 21

6 USING CPLEX FOR LINEAR PROGRAMMING... 23

6.1 CPLEX LINEAR PROGRAMMING ALGORITHMS... 23
6.2 DIRECTIVES FOR PROBLEM AND ALGORITHM SELECTION ... 24
6.3 DIRECTIVES FOR PREPROCESSING ... 26
6.4 DIRECTIVES FOR CONTROLLING THE SIMPLEX ALGORITHM .. 28
6.5 DIRECTIVES FOR CONTROLLING THE BARRIER ALGORITHM.. 32
6.6 DIRECTIVES FOR IMPROVING STABILITY ... 33

ii AMPL User Guide

6.7 DIRECTIVES FOR STARTING AND STOPPING ... 35
6.8 DIRECTIVES FOR CONTROLLING OUTPUT .. 36

7 USING CPLEX FOR INTEGER PROGRAMMING.. 39

7.1 CPLEX MIXED INTEGER ALGORITHM .. 39
7.2 DIRECTIVES FOR PREPROCESSING ... 41
7.3 DIRECTIVES FOR ALGORITHMIC CONTROL .. 44
7.4 DIRECTIVES FOR RELAXING OPTIMALITY .. 49
7.5 DIRECTIVES FOR HALTING AND RESUMING THE SEARCH .. 50
7.6 DIRECTIVES FOR CONTROLLING OUTPUT .. 53
7.7 COMMON DIFFICULTIES .. 54

7.7.1 Running Out of Memory.. 54
7.7.2 Failure To Prove Optimality ... 55
7.7.3 Difficult MIP Subproblems.. 55

8 DEFINED SUFFIXES FOR CPLEX... 57

8.1 ALGORITHMIC CONTROL... 57
8.2 SENSITIVITY RANGING .. 58
8.3 DIAGNOSING INFEASIBILITIES.. 59
8.4 DIRECTION OF UNBOUNDEDNESS .. 61

9 CPLEX STATUS CODES IN AMPL .. 63

9.1 SOLVE CODES ... 63
9.2 BASIS STATUS ... 65

APPENDIX A CPLEX SYNONYMS ... 67

AMPL User Guide 1

1 Introduction

1.1 Welcome to AMPL
Welcome to the AMPL Modeling System − a comprehensive, powerful,
algebraic modeling language for problems in linear, nonlinear, and integer
programming. AMPL is based upon modern modeling principles and
utilizes an advanced architecture providing flexibility most other modeling
systems lack. AMPL has been proven in commercial applications, and is
successfully used in demanding model applications around the world.

AMPL helps you create models with maximum productivity. By using
AMPL’s natural algebraic notation, even a very large, complex model can
often be stated in a concise (often less than one page), understandable form.
Since AMPL models are easy to understand, debug, and modify, AMPL also
makes maintaining models easy.

1.2 Using This Guide
This brief Guide will take you through starting up AMPL, reading a model
and supplying data, and solving (optimizing) the model using CPLEX. The
first three sections cover issues such as using command-line options and
environment variables and using AMPL on different operating systems.
Later sections provide a detailed description of CPLEX directives.

Installation and set-up are not described in this document – consult the
accompanying installation instructions. Documentation describing other
AMPL-compatible solvers distributed by ILOG is also available separately.

This Guide does not teach you the AMPL language. To learn and effectively
use the features of the AMPL language, you should have a copy of the book
AMPL: A Modeling Language for Mathematical Programming by Robert
Fourer, David M. Gay and Brian W. Kernighan (ISBN 0-534-50983-5, first
published in 1993 by The Scientific Press, now published by Duxbury
Press). This book includes a tutorial on AMPL and optimization modeling;
models for many “classical” problems such as production, transportation,
blending, and scheduling; discussions of modeling concepts such as linear,

2 AMPL User Guide

nonlinear and piecewise-linear models, integer linear models, and
columnwise formulations; and a reference section.

AMPL is continuously undergoing development, and while we strive to keep
users updated on language features and capabilities, the official reference to
the language is the AMPL book, which is naturally revised less frequently.

1.3 Installing AMPL
Please read these instructions in their entirety before beginning the
installation. Remember that most distributions will operate properly only on
the specific platform and operating system version for which they were
intended. If you upgrade your operating system you may need to obtain a
new distribution.

All AMPL installations include cplexamp (cplexamp.exe on Windows), the
CPLEX solver for AMPL. This combined distribution is known as the
AMPL/CPLEX system.

Note that cplexamp may not be licensed for a few users with unsupported
solvers. However, most AMPL installations will include the use of
cplexamp.

1.3.1 Requirements

AMPL may be installed and run on the following configurations:

Computer Operating System Release
DEC Alpha DEC UNIX 4.0 and higher
HP PA-7xxx HP-UX 11 and higher
HP PA-8xxx HP-UX 11 and higher
Intel PC Linux 2.1 and higher
Intel PC Windows NT 3.5 and higher
Intel PC Windows 9x/2000
RS6000 or PowerPC AIX 4.3 and higher
SGI 32-bit (MIPS3) Irix 6.5 and higher
SGI 64-bit (MIPS4) Irix 6.5 and higher
Sun SPARC Solaris 2.6 and higher
Sun Ultra Solaris 2.6 and higher

1.3.2 Unix Installation

On Unix systems AMPL is installed into the current working directory. We
recommend that you perform the installation in an empty directory. After
installation, make sure the executable files have read and execute privileges
turned on for all users and accounts that will use AMPL.

CD-ROM

AMPL User Guide 3

The ILOG CD contains the AMPL/CPLEX system for several different
platforms. First, read the file INFO_UNX.TXT. The section titled, "AMPL
Modeling Language" contains information to help you locate the distribution
for your platform. Note that the files listed in this section contain the entire
AMPL/CPLEX System, not just the AMPL language processor. After you
have located the files, read the CD booklet for instructions on extracting the
distribution.

FTP

Execute:
gzip-dc < /path/ampl.tgz | tar xf -

where /path is the full path name into which ampl.tgz was downloaded.

AMPL and Parallel CPLEX (except for Linux)

If you have purchased the AMPL and Parallel CPLEX, follow the above
installation instructions for the appropriate media. Then rename cplexamp to
cplexamp.ser. And rename parcplexamp to cplexamp.

1.3.3 Windows Installation

On Windows systems AMPL is installed into a directory which you can
specify during the installation (the default location is C:\AMPL).

CD-ROM

The ILOG CD contains the AMPL/CPLEX system for several different
platforms. First, read the file INFO_PC.TXT. The section titled, "AMPL
Modeling Language" contains information to help you locate the distribution
for your version of Windows. Note that the files listed in this section
contain the entire AMPL/CPLEX System, not just the AMPL language
processor. After you have located the files, read the CD booklet for
instructions on setting up the distribution.

FTP

After downloading the files, execute SETUP.EXE from the “Run” dialog or
in a “Command” (MS-DOS Commands) window. Follow the instructions
presented by the setup program. To start the Run dialog box on Windows
95, Windows 98, and Windows NT 4.0, click on the Start button and select
“Run…”.

AMPL and Parallel CPLEX

If you have purchased the AMPL and Parallel CPLEX, follow the above
installation instructions for the appropriate media. The AMPL/CPLEX
System will automatically use the parallel processors available on your
computer provided your license configuration includes the parallel option.

1.3.4 Licensing

AMPL is licensed in the same way as CPLEX. If you have already activated
a license for the CPLEX Suite on this machine and you are not adding

4 AMPL User Guide

AMPL as a new feature, then AMPL is already licensed, and you should skip
these licensing instructions.

1.3.4.1 Updating an Existing License

If you are upgrading from a previous version of CPLEX, please refer to the
CPLEX License Update Instructions (provided separately) or contact the
CPLEX License Administrator. You should skip any installation steps that
would establish a new license.

1.3.4.2 New Installation

If you are installing CPLEX or AMPL for the first time, you will receive an
ILOG License Manager (ILM) manual and a license key that enables the use
of AMPL and/or CPLEX. Follow the instructions in that manual for details
on how to install the license key.

1.3.5 Usage Notes

The CPLEX solver for AMPL is named cplexamp (cplexamp.exe on
Windows). This version of AMPL will use this solver by default. Older
versions of the CPLEX solver for AMPL were simply named cplex
(cplex.exe on Windows). Some users of that version may have specified the
solver in their model or run files like this:

option solver cplex;

If you have models containing settings like this, you will encounter errors (or
the old version of the solver might be invoked). There are two ways to fix
this. Ideally, you should change these lines to:

option solver cplexamp;

If that is not practical, you can copy the file cplexamp to cplex. If you do the
latter, you must remember to copy it again the next time you upgrade
cplexamp.

Parallel users of the barrier method on the Sun UltraSparc will need to set
the PARALLEL system environment variable to a value greater than or
equal to the number of licensed threads. For example, from the C shell the
command

setenv PARALLEL 4

will enable the parallel CPLEX solver for AMPL to use 4 threads, subject to
license restrictions.

1.3.6 Installed Files

Unix systems
ampl AMPL
cplexamp The CPLEX solver for AMPL
examples.txt Description of the example files (installed

with the examples)

AMPL User Guide 5

Windows systems
ampl.exe AMPL
cplexamp.exe The CPLEX solver for AMPL
uninst.isu File used by the Windows uninstall

procedure
ampltabl.dll ODBC database interface

Examples
/models Sample AMPL models - Most of these

correspond to examples in the AMPL
book. More information on some of the
examples is provided in the readme file in
this directory.

/looping Advanced sample AMPL models - A
description of each is provided in the
readme file in this directory.

/compass/finance
/compass/invest
/compass/logistic
/compass/product
/compass/purchase
/compass/schedule

More samples - The compass directory is
sub-divided into industry-specific sub-
directories. The models have been brought
together from a variety of sources.
Together, they provide a palette of AMPL
models that you may use as a starting point
for your projects.

Parallel systems

On systems that support parallelization, additional files may be present:

Unix
parcplexamp Parallel CPLEX solver for AMPL

AMPL User Guide 7

2 Using AMPL

2.1 Running AMPL
If you have added the AMPL installation directory to the search path, you
can run AMPL from any directory. Otherwise, run AMPL by moving to the
AMPL directory and typing ampl at the shell prompt.

At the ampl: prompt, you can type any AMPL language statement, or any
of the commands described in Section A.13 of the book AMPL: A Modeling
Language for Mathematical Programming. To end the session, type quit;
at the AMPL prompt.

2.2 Using a Text Editor
Generally, you will edit your model and data (both expressed using AMPL
language statements) in a text editor, and type commands at the ampl:
prompt to load your model and data, solve a problem, and inspect the results.
Although you could type in the statements of a model at the ampl: prompt,
AMPL does not include a built-in text editor, so you cannot use AMPL
commands to edit the statements you have previously entered. Microsoft
Windows users (on PCs) and XWindows users (on Unix systems) should
open separate windows for editing files and running AMPL.

If you cannot open multiple windows on your desktop, you can use AMPL’s
shell command to invoke an editor from within AMPL. You can use any
editor that saves files in ASCII format. Windows command-line (or "DOS")
users can use edit or notepad and Unix users vi or emacs. If you are using
edit under DOS, for instance, you can type:

ampl: shell ’edit steel.dat’;

Use editor menus and commands to edit your file, then save it and exit the
editor. At the ampl: prompt you can type new AMPL commands, such as:

ampl: reset data;
ampl: data steel.dat;

8 AMPL User Guide

Note that editing a file in a text editor does not affect your AMPL session
until you explicitly reload the edited file, as shown above.

2.3 Running AMPL in Batch Mode
If you have previously developed a model and its data, and would like to
solve it and display the results automatically, you can create a file containing
the commands you would like AMPL to execute, and specify that file at the
command line when you run AMPL. For example, you might create a file
called steel.run, containing the commands:

model steel.mod;
data steel.dat;
option solver cplexamp;
solve;
display Make >steel.ans;

(This assumes that steel.run is in the same directory as the model and data
files, and that AMPL can be found on the path.) You can then run AMPL as
follows:

C:\> ampl steel.run

A more flexible approach, which is a commonly followed convention among
AMPL users, is to put just the AMPL commands (the last three lines in the
example above) in a file with the *.run extension. You can then type:

C:\> ampl steel.mod steel.dat steel.run

which accomplishes the same thing as:

C:\> ampl
ampl: include steel.mod;
ampl: include steel.dat;
ampl: include steel.run;
ampl: quit;
C:\>

If you intend to load several files and solve a problem, but you want to type a
few interactive commands in the middle of the process, type the character -
in place of a filename. AMPL processes the files on the command line from
left to right; when it encounters the - symbol it displays the ampl: prompt
and accepts commands until you type end;. For example, you could type:

C:\> ampl steel.mod steel.dat - steel.run
ampl: let avail := 50;
ampl: end;

This will solve the problem as before, but with the parameter avail set to
50 instead of 40 (the value specified in steel.dat). To start AMPL, load and
model and data file, and wait for your interactive commands, type:

C:\> ampl steel.mod steel.dat -

AMPL User Guide 9

3 AMPL-Solver Interaction

3.1 Choosing a Solver
AMPL’s solver interface supports linear, nonlinear and mixed integer
models with no built-in size limitations. This interface is rich enough to
support many of the features used by advanced solvers to improve
performance and solution accuracy, such as piecewise-linear constructs,
representation of network problems, and automatic differentiation of
nonlinear functions. To take advantage of these features, solvers must be
written to utilize AMPL’s interface. ILOG provides no support for the usage
of AMPL with solvers not distributed by ILOG.

You choose a solver for a particular problem by giving its executable
filename (without the EXE suffix) in the AMPL option solver
command. For example, to use the (AMPL-compatible) CPLEX solver,
type:

ampl: option solver cplexamp;

Most solvers have algorithmic options, such as CPLEX with its Mixed
Integer and Barrier options. In cases like these, you give the solver
executable name to AMPL (for example, with option solver
cplexamp); the solver will determine, from the problem characteristics as
passed by AMPL (e.g. a quadratic objective or integer variables) as well as
solver options you specify, which algorithmic options will be used.

3.2 Specifying Solver Options
You can specify option settings for a particular solver through the AMPL
option command. (CPLEX-specific directives are described later in this
document.) Since all solvers provide default settings for their options, this is
necessary only when your problem requires certain non-default settings in
order to solve, or when certain settings yield improved performance or
solution accuracy.

To specify solver options, you type option solver_options
’settings’; where solver is replaced by the name of the solver you

10 AMPL User Guide

are using. This approach allows you to set up different options for each
solver you are using, and switch among them by simply choosing the
appropriate solver with the option solver command. For example:

ampl: option cplex_options ’relax scale=1’;

Solver options consist of an identifier alone, or an identifier followed by an
= sign and a value. Some solvers treat uppercase and lower versions of an
option identifer as equivalent, while others are sensitive to upper- and lower-
case (so that RELAX is not the same as relax, for example).

Solver option settings can easily become long enough to stretch over more
than one line. In such cases you can either continue a single quoted string by
placing a \ (back-slash) character at the end of each line, as in:

ampl: option cplex_options ’crash=0 dual \
ampl? feasibility=1.0e-8 scale=1 \
ampl? lpiterlim=100’;

Or you can write a series of individually quoted strings, which will be
concatenated automatically by AMPL, as in:

ampl: option cplex_options ’crash=0 dual’
ampl? ’ feasibility=1.0e-8 scale=1’
ampl? ’ lpiterlim=100’;

If you use the latter approach, be sure to include spaces at the beginning or
end of the individual strings, so that the identifiers will be separated by
spaces when all of the strings are concatenated.

Often you will want to add solver options to the set you are currently using.
If you simply type a command such as option solver_options
’new options’; however, you will “overwrite” the existing option
settings. To avoid this problem, you can use AMPL’s $ notation for options:
the symbol $option_name is replaced by the current value of
option_name. To add an optimality tolerance to the CPLEX options in
the above example, you would write:

ampl: option cplex_options $cplex_options
ampl? ’ optimality=1.0e-8’;

3.3 Initial Variable Values and Solvers
Some optimizers (including most nonlinear solvers but excluding simplex-
based linear solvers) make use of initial values for the decision variables as a
starting point in their search for an optimal solution. A good choice of initial
values can greatly speed up the solution process in some cases. Moreover, in
nonlinear models with multiple local optima, the optimal solution reported
by the solver may depend on the initial values for the variables.

AMPL passes initial values for decision variables, and dual values if
available, to the solver. You can set initial values using the := syntax in the
var declaration of your AMPL model.

AMPL User Guide 11

When you solve a problem two times in a row, the final values from the first
solver invocation become the initial values for the second solver invocation
(unless you override this behavior with statements in your AMPL model). In
nonlinear models with multiple local optima, this can cause some solvers to
report a different solution on the second invocation.

Simplex-based solvers typically discard initial values. However, they can
use basis status information, if available. Basis statuses can be set either
within AMPL or by a previous optimization. Information on interpreting
and setting variable statuses is provided in Section 9.

3.4 Problem and Solution Files
When you type solve; AMPL processes your model and data to create a
temporary “problem file” such as steel.nl, which will be read by the solver.
It then loads and executes the solver program, which is responsible for
creating a “solution file” such as steel.sol. AMPL reads the solution file and
makes the solution values available through the variable, constraint and
objective names you have declared in your AMPL model. Unless you
specify otherwise, AMPL then deletes the temporary problem and solution
files.

You can display the solution information (e.g. the values of the decision
variables and constraints) in your AMPL session with commands such as
display. For example, if you have just solved a problem created from
steel.mod and steel.dat, you could type:

ampl: display Make, Time;

To save this output in a file, you can use redirection:

ampl: display Make, Time > mysol.txt;

Note that when you simply mention the name of a constraint in a display
statement, AMPL will display the dual value (shadow price) of that
constraint, not its “left-hand side” value. You can use the AMPL suffix
notation to display the “left-hand side” value, as described in the book
AMPL: A Modeling Language for Mathematical Programming.

3.4.1 Saving Temporary Files

Since AMPL deletes the temporary problem (*.nl) and solution (*.sol) files
after a solver is finished, no permanent record of the solution is kept unless
you save the output yourself (for example, using display with redirection
as illustrated above). To override the deletion of temporary files, you can
use the AMPL write command. For example:

C:\> ampl
ampl: model steel.mod; data steel.dat;
ampl: write bsteel;
ampl: solve;

12 AMPL User Guide

CPLEX 7.0: optimal solution; objective 192000
2 iterations (0 in phase I)

ampl: quit;

The first letter b in the “filename” portion of the write command is inter-
preted specially, as explained below. If you now display the files in the
current directory with a command such as dir steel.*, you will find the
problem file steel.nl and the solution file steel.sol.

To later view the solution values, you would use the solution command.
For example:

C:\> ampl
ampl: model steel.mod; data steel.dat;
ampl: solution steel.sol;

CPLEX 7.0: optimal solution; objective 192000
2 iterations (0 in phase I)

ampl: display Make;
Make [*] :=
bands 6000
coils 1400
;
ampl: quit;

You must include the model and data statements, as shown above, so that
AMPL knows the definitions of symbolic names like Make. But
solution then retrieves the earlier results from steel.sol, without running a
solver.

When b is used as the first character of the “filename” portion of the write
command, AMPL uses a compact and efficient binary format for the
problem and solution files. When g is used instead, AMPL writes the files
in an ASCII format which may be easier to transmit electronically over
systems like the Internet. (In technical support and consulting situations,
ILOG may ask you to send a file using this format.) When m is used, AMPL
writes the problem in MPS format, and the filename ends in mps (e.g.,
steel.mps). This is described further under “Using MPS File Format.”

3.4.2 Creating Auxiliary Files

AMPL can create certain (human- and program-readable) auxiliary files that
help relate the various set, variable, constraint and objective names used in
your AMPL model to the “column” and “row” indices which are written to
the problem file and seen by the solver. This is particularly valuable when
the AMPL presolve phase actually eliminates variables (by substitution) and
constraints (which are found to be redundant or never binding) before the
problem is sent to the solver.

To create the auxiliary files, you set the AMPL option auxfiles to a
string of letters denoting the combination of auxiliary files you would like
produced, and then use the write command to create and save the auxiliary
files along with the problem (*.nl) file. For example, the command:

AMPL User Guide 13

ampl: option auxfiles ’cr’;

will cause the write command to create auxiliary files containing the
names of the variables (columns) and constraints (rows) as sent to the solver.
The table below shows the types of auxiliary files that can be created and the
letter you use to request them via the AMPL option auxfiles.

3.5 Running Solvers Outside AMPL
With the write and solution commands just described, you can arrange
to execute your solver outside the AMPL session. You might want to do this
if you receive an “out of memory” message from your solver (not from
AMPL itself): When the solver is invoked from within AMPL, a fair amount
of memory is already used for the AMPL Modeling System program code
and for data structures created by AMPL for its own use in memory. If you
execute the solver alone, it can use all available memory.

To run your solver separately, first use AMPL to create a problem file:

C:\> ampl
ampl: model steel.mod; data steel.dat;
ampl: write bsteel;
ampl: quit;

Then run your solver with a command like the one below (for CPLEX):

C:\> cplexamp steel -AMPL solver_options

In this example, the first argument steel matches the filename (after the
initial letter b) in the AMPL write command. The -AMPL argument tells the
solver that it is receiving a problem from AMPL. This may optionally be
followed by any solver options you need for the problem, using the same
syntax used with the option solver_options command but omitting
the outer quotes (for example crash=1 relax). Assuming that the solver
runs successfully to completion, it will write a solution file (steel.sol in this
case). You can then restart AMPL and read in the results with the solution
command, as outlined earlier:

Letter Extension Description
a .adj adjustment to objective, e.g. to compensate for fixed

variables eliminated by presolve
c .col AMPL names of the variables (columns) sent to the solver
f .fix names of variables fixed by presolve, and the values to

which they are fixed
r .row AMPL names of the constraints (rows) sent to the solver
s .slc names of “slack” constraints eliminated by presolve

because they can never be binding
u .unv names of variables dropped by presolve because they are

never used in the problem instance

14 AMPL User Guide

C:\> ampl
ampl: model steel.mod; data steel.dat;
ampl: solution steel.sol;

3.6 Using MPS File Format
MPS file format, originally developed decades ago for IBM’s Mathematical
Programming System, is a widely recognized format for linear and integer
programming problems. Although it is a “standard” supported by many
solvers and modeling systems (including AMPL), MPS file format is neither
compact nor easy to read and understand; AMPL’s binary file format is a
much more efficient way for modeling systems and solvers to communicate.
Also, MPS file format cannot be used for nonlinear problems, and not all
“MPS compatible” solvers support exactly the same format, particularly for
mixed integer problems.

AMPL does have the ability to translate a model into MPS file format, as
outlined below. With this feature, you may be able to solve AMPL models
with a solver which reads its problem input in MPS file format. If you
choose to use this feature, you will find AMPL’s ability to produce auxiliary
files (outlined earlier) very useful, since these files can be used to relate the
MPS file format information to the sets, variables, constraints and objectives
defined in the AMPL model. However, you will not be able to bring the
solution (e.g. variable values, dual values, etc.) back into AMPL; further
work with the solution must be performed outside of AMPL.

To translate your model into MPS file format, use the write command as
outlined above with m as the first letter of the “filename”. To illustrate, the
command shown below creates a file named steel.mps:

ampl: write msteel;

In most cases, you will need to run your solver separately to obtain the
solution.

Note that the MPS format does not provide a way to distinguish between
objective maximization and minimization. However, CPLEX assumes that
the objective is to be minimized. (There is no standardization on this issue;
other solvers may assume maximization.) Thus, it is incumbent upon the
user of the MPS format to ensure that the objective sense in the AMPL
model corresponds to the solver’s interpretation.

3.7 Temporary Files Directory
By default − when the AMPL option TMPDIR is set to ‘’ (an empty string) −
AMPL writes the problem and solution files and other temporary files to the
current directory. You can give a specific location for the temporary files by
setting option TMPDIR to a valid path. On a PC, you might use:

ampl: option TMPDIR ’D:\temp’;

On a Unix machine, a typical choice would be:

AMPL User Guide 15

ampl: option TMPDIR ’/tmp’;

AMPL User Guide 17

4 Customizing AMPL

4.1 Command Line Switches
Certain AMPL options normally set with the option command during an
AMPL session can also be set when AMPL is first invoked. This is done
using a command-line switch consisting of a hyphen and a single letter,
followed in some cases by a numeric or string value. You will find these
switches most useful when you have one or more model, data, or “run” files
which you want AMPL to process using different option settings at different
times, without actually editing the files themselves.

The table below is a summary of the command line switches and their
equivalent names when set with the AMPL option command:

If you type ampl -? at the shell prompt, AMPL will display a summary list
of all of the command line switches. (On some Unix shells ? is a special
character, so you may need to use “-?” (with the double quotation marks).

Switch AMPL Option Description
-Cn Cautions n n = 0: suppress caution messages

n = 1: report caution messages (default)
n = 2: treat cautions as errors

-en eexit n n > 0: abandon command after n errors
n < 0: abort AMPL after |n| errors
n = 0: report any number of errors

-f funcwarn 1 do not treat unavailable functions of constant
arguments as variable

-P presolve 0 turn off AMPL’s presolve phase
-S substout 1 use “defining” equations to eliminate variables
-L linelim 1 fully eliminate variables with linear “defining”

equations, so model is recognized as linear
-T gentimes 1 show time to generate each model component
-t times 1 show time taken in each model translation phase
-ostr outopt str set problem file format (b, g, m) and stub name;

to display more possibilities use -o?
-s randseed ‘’ use current time for random number seed
-sn randseed n use n for random number seed
-v version display the AMPL software version number

18 AMPL User Guide

4.2 Persistent Option Settings
If you have many option settings or other commands that you would like
performed each time AMPL starts, you may create a text file containing
these commands (in AMPL language syntax). Then set the environment
variable name OPTIONS_IN to the pathname of this text file. For example,
on a Windows PC, you should type:

C:\> set OPTIONS_IN=c:\amplinit.txt

A C shell user on a Unix machine would need to type something like:

% setenv OPTIONS_IN ~ijr/amplinit.txt

AMPL reads the file referred to by OPTIONS_IN and executes any com-
mands therein before it reads any other files mentioned on the command line
or prompts for any interactive commands.

If you want AMPL to preserve all of your option settings from one session to
the next, you can cause AMPL to write the options into a text file named by
setting the AMPL option OPTIONS_INOUT:

ampl: option OPTIONS_INOUT ’c:\amplopt.txt’;

Before exiting, AMPL writes a series of option commands to the file
named by OPTIONS_INOUT which, when read, will set all of the options to
the values they had at the end of the session. To use this text file, set the
corresponding environment variable to the same filename:

C:\> set OPTIONS_INOUT=c:\amplopt.txt

After you do this, AMPL will read and execute the commands in
amplopt.txt when it starts up. When you end a session, AMPL will
write the current option settings − including any changes you have made dur-
ing the session − into this file, so that they will be preserved for use in your
next session.

If both the OPTIONS_IN and OPTIONS_INOUT environment variables are
defined, the file referred to by OPTIONS_IN will be processed first, then
the file referred to by OPTIONS_INOUT.

AMPL User Guide 19

5 Using CPLEX with AMPL

5.1 Problems Handled by CPLEX
CPLEX is designed to solve linear programs as described in Chapters 1-8
and 11-12 of AMPL: A Modeling Language for Mathematical Programming,
as well as the integer programs described in Chapter 15. Integer programs
may be pure (all integer variables) or mixed (some integer and some
continuous variables); integer variables may be binary (taking values 0 and 1
only) or may have more general lower and upper bounds.

For the network linear programs described in Chapter 12, CPLEX also
incorporates an especially fast network optimization algorithm.

The Barrier algorithmic option to CPLEX, though originally designed to
handle linear programs, also allows the solution of a special class of
nonlinear problems, namely, quadratic programs (QPs), as described later in
this section. However, CPLEX does not solve general (non-QP) nonlinear
programs. For instance, if you attempt to solve the following nonlinear
problem described in Chapter 13 of the AMPL book, CPLEX will generate
an error message:

ampl: model models\nltransd.mod;
ampl: data models\nltrans.dat;
ampl: option solver cplexamp;
ampl: solve;
at0.nl contains a nonlinear objective.

ampl:

This restriction applies if your model uses any function of variables that
AMPL identifies as “not linear” − even a function such as abs or min that
shares some properties of linear functions.

5.1.1 Piecewise-linear Programs

CPLEX does solve piecewise-linear programs, as described in Chapter 14, if
AMPL transforms them to problems that CPLEX’s solvers can handle. The

20 AMPL User Guide

transformation to a linear program can be done if the following conditions
are met:

• Any piecewise-linear term in a minimized objective must be convex, its
slopes forming an increasing sequence as in:

<<−1,1,3,5; −5, −1,0,1.5,3>> x[j]

• Any piecewise-linear term in a maximized objective must be concave, its
slopes forming a decreasing sequence as in:

<<1,3; 1.5,0.5,0.25>> x[j]

• Any piecewise-linear term in the constraints must be either convex and
on the left-hand side of a � constraint (or equivalently, the right-hand
side of a � constraint), or else concave and on the left-hand side of a �
constraint (or equivalently, the right-hand side of a � constraint).

In all other cases, the transformation is to a mixed integer program. AMPL
automatically performs the appropriate conversion, sends the resulting linear
or mixed integer program to CPLEX, and converts the solution into user-
defined variables. The conversion has the effect of adding a variable to
correspond to each linear piece; when the above rules are not satisfied,
additional integer variables and constraints must also be introduced.

5.1.2 Quadratic Programs

This user guide provides but a brief description of quadratic programming.
In effect, it is assumed that you are familiar with the area. Interested users
may wish to consult a good reference, such as Practical Optimization, by
Gill, Murray and Wright (Academic Press, 1981) for more details.

A mathematical description of a quadratic program is given as:

where ~ stands for �, �, or = operators.

In the above formula, Q represents a matrix of quadratic objective function
coefficients. Its diagonal elements Qii are the coefficients of the quadratic
terms xi

2. The non-diagonal elements Qij and Qji are added together to be the
coefficient of the term xixj.

CPLEX’s Barrier algorithmic option incorporates an extension for quadratic
programming. For a problem to be solvable using this option, the following
conditions must hold:

1. All constraints must be linear.

2. The objective must be a sum of terms, each of which is either a linear
expression or a product of two linear expressions.

AMPL User Guide 21

3. For any values of the variables (whether or not they satisfy the
constraints), the quadratic part of the objective must have a nonnegative
value (if a minimization) or a nonpositive value (if a maximization).

The last condition is known as positive semi-definiteness (for minimization)
or negative semi-definiteness (for maximization). CPLEX automatically
recognizes nonlinear problems that satisfy these conditions, and invokes the
barrier algorithm to solve them. Nonlinear problems of any other kind are
rejected with an appropriate message.

5.2 Specifying CPLEX directives
In many instances, you can successfully apply CPLEX by simply specifying
a model and data, setting the solver option to cplex, and typing solve.
For larger linear programs and especially the more difficult integer
programs, however, you may need to pass specific options (also referred to
as directives) to CPLEX to obtain the desired results.

To give directives to CPLEX, you must first assign an appropriate character
string to the AMPL option called cplex_options. When CPLEX is
invoked by solve, it breaks this string into a series of individual directives.
Here is an example:

ampl: model diet.mod;
ampl: data diet.dat;
ampl: option solver cplexamp;
ampl: option cplex_options ’crash=0 dual \
ampl? feasibility=1.0e-8 scale=1 \
ampl? lpiterlim=100’;
ampl: solve;
CPLEX 7.0: crash 0
dual
feasibility 1e-08
scale 1
lpiterlim 100
CPLEX 7.0: optimal solution; objective 88.2
1 iterations (0 in phase I)

CPLEX confirms each directive; it will display an error message if it
encounters one that it does not recognize.

CPLEX directives consist of an identifier alone, or an identifier followed by
an = sign and a value; a space may be used as a separator in place of the =.

You may store any number of concatenated directives in cplex_options.
The example above shows how to type all the directives in one long string,
using the \ character to indicate that the string continues on the next line.
Alternatively, you can list several strings, which AMPL will automatically
concatenate:

22 AMPL User Guide

ampl: option cplex_options ’crash=0 dual’
ampl? ’ feasibility=1.0e-8 scale=1’
ampl? ’ lpiterlim=100’;

In this form, you must take care to supply the space that goes between the
directives; here we have put it before feasibility and iterations.

If you have specified the directives above, and then want to try setting, say,
optimality to 1.0e−8 and changing crash to 1, you might think to type:

ampl: option cplex_options
ampl? ’optimality=1.0e-8 crash=1’;

However, this will replace the previous cplex_options string. The other
previously specified directives such as feasibility and iterations will revert to
their default values. (CPLEX supplies a default value for every directive not
explicitly specified; defaults are indicated in the discussion below.) To
append new directives to cplex_options, use this form:

ampl: option cplex_options $cplex_options
ampl? ’ optimality=1.0e-8 crash=1’;

A $ in front of an option name denotes the current value of that option, so
this statement just appends more directives to the current directive string. As
a result the string contains two directives for crash, but the new one
overrides the earlier one.

AMPL User Guide 23

6 Using CPLEX for Linear
Programming

6.1 CPLEX Linear Programming Algorithms
For linear programs, CPLEX employs either a simplex method or a barrier
method to solve the problem. Refer to a linear programming textbook for
more information on these algorithms. Four distinct methods of optimization
are incorporated in the CPLEX package:

• A primal simplex algorithm that first finds a solution feasible in the
constraints (Phase I), then iterates toward optimality (Phase II).

• A dual simplex algorithm that first finds a solution satisfying the
optimality conditions (Phase I), then iterates toward feasibility (Phase
II).

• A network primal simplex algorithm that uses logic and data structures
tailored to the class of pure network linear programs.

• A primal-dual barrier (or interior-point) algorithm that simultaneously
iterates toward feasibility and optimality, optionally followed by a
primal or dual crossover routine that produces a basic optimal solution
(see below).

CPLEX normally chooses one of these algorithms for you, but you can
override its choice by the directives described below.

The simplex algorithm maintains a subset of basic variables (or, a basis)
equal in size to the number of constraints. A basic solution is obtained by
solving for the basic variables, when the remaining nonbasic variables are
fixed at appropriate bounds. Each iteration of the algorithm picks a new
basic variable from among the nonbasic ones, steps to a new basic solution,
and drops some basic variable at a bound.

The coefficients of the variables form a constraint matrix, and the
coefficients of the basic variables form a nonsingular square submatrix
called the basis matrix. At each iteration, the simplex algorithm must solve
certain linear systems involving the basis matrix. For this purpose CPLEX

24 AMPL User Guide

maintains a factorization of the basis matrix, which is updated during most
iterations, and is occasionally recomputed.

The sparsity of a matrix is the proportion of its elements that are not zero.
The constraint matrix, basis matrix and factorization are said to be relatively
sparse or dense according to their proportion of nonzeros. Most linear
programs of practical interest have many zeros in all the relevant matrices,
and the larger ones tend also to be the sparser.

The amount of RAM memory required by CPLEX grows with the size of the
linear program, which is a function of the numbers of variables and
constraints and the sparsity of the coefficient matrix. The factorization of
the basis matrix also requires an allocation of memory; the amount is
problem-specific, depending on the sparsity of the factorization. When
memory is limited, CPLEX automatically makes adjustments that reduce its
requirements, but that usually also reduce its optimization speed.

The CPLEX directives in the following subsections apply to the solution of
linear programs, including network linear programs. The letters i and r
denote integer and real values, respectively.

6.2 Directives for Problem and Algorithm Selection
CPLEX consults several directives to decide how to set up and solve a linear
program that it receives. The default is to apply the dual simplex method to
the linear program as given, substituting the network variant if the AMPL
model contains node and arc declarations. The following discussion indi-
cates situations in which you should consider experimenting with
alternatives.

dualthresh=i (default 32000)

primal

dual

Every linear program has an equivalent “opposite” linear program; the
original is customarily referred to as the primal LP, and the equivalent as the
dual. For each variable and each constraint in the primal there are a corres-
ponding constraint and variable, respectively, in the dual. Thus when the
number of constraints is much larger than the number of variables in the
primal, the dual has a much smaller basis matrix, and CPLEX may be able to
solve it more efficiently.

The primal and dual directives instruct CPLEX to set up the primal or
the dual formulation, respectively. The dualthresh directive makes a
choice: the dual LP if the number of constraints exceeds the number of
variables by more than i, and the primal LP otherwise.

primalopt

dualopt

baropt

AMPL User Guide 25

The primalopt, dualopt and baropt directives instruct CPLEX to
apply the primal simplex algorithm, the dual simplex algorithm, or the
barrier method respectively. The two simplex variants use similar basis
matrices but employ opposite strategies in constructing a path to the
optimum. Any of the algorithms can be applied regardless of whether the
primal or the dual LP is set up as explained above; in general the six
combinations of primalopt/ dualopt/baropt and primal/dual
perform differently.

Unless primalopt or baropt are specified, CPLEX uses dualopt by default.
Linear programs that are highly degenerate (many basic variables at their
bounds) and that have little variability in the righthand sides (constant terms)
of their constraints often solve faster using the dual simplex. Also consider
trying the dual simplex if CPLEX’s primal simplex reports problems of
numerical inaccuracy; few linear programs exhibit poor numerical perform-
ance in both the primal and the dual algorithms. In general the barrier
method tends to work well when the product of the constraint matrix and its
transpose remains sparse.

netopt=i (default 1)

CPLEX incorporates an optional heuristic procedure that looks for “pure
network” constraints in your linear program. If this procedure finds
sufficiently many such constraints, CPLEX applies its fast network simplex
algorithm to them. Then, if there are also non-network constraints, CPLEX
uses the network solution as a start for solving the whole LP by the general
primal or dual simplex algorithm, whichever you have chosen.

The default value of i=1 invokes the network-identification procedure if and
only if your model uses node and arc declarations, and CPLEX sets up the
primal formulation as discussed above. Setting i=0 suppresses the
procedure, while i=2 requests its use in all cases. You can have CPLEX
display the number of network nodes (constraints) and arcs (variables) that it
has extracted, by setting the prestats directive (described with the
preprocessing options below) to 1.

CPLEX’s network simplex algorithm can achieve dramatic reductions in
optimization time for “pure” network linear programs defined entirely in
terms of node and arc declarations. (For a pure network LP, every arc
declaration must contain at most one from and one to phrase, and these
phrases may not specify optional coefficients.) In the case of linear
programs that are mostly defined in terms of node and arc declarations, but
that have some “side” constraints defined by subject to declarations, the
benefit is highly dependent on problem structure; it is best to try
experimenting with both i=0 and i=1.

relax

This directive instructs CPLEX to ignore any integrality restrictions on the
variables. The resulting linear program is solved by whatever algorithm the
above directives specify.

26 AMPL User Guide

maximize

minimize

While AMPL completely specifies the problem and its objective sense, it is
possible to change the objective sense after specifying the model. The two
directives instruct CPLEX to set the objective sense to be minimize or
maximize, respectively.

6.3 Directives for Preprocessing
Prior to applying any simplex algorithm, CPLEX modifies the linear
program and initial basis in ways that tend to reduce the number of iterations
required. The following directives select and control these preprocessing
features.

aggregate=i1 (default 1)

aggfill=i2 (default 10)

When i1 is left at its default value of 1, CPLEX looks for constraints that
(possibly after some rearrangement) define a variable x in terms of other
variables:

• two-variable constraints of the form x = y + b;

• constraints of the form x = Σj yj, where x appears in less than i2 other
constraints.

Under certain conditions, both x and its defining equation can be eliminated
from the linear program by substitution. In CPLEX’s terminology, each
such elimination is an aggregation of the linear program. When i1 is –1,
CPLEX decides how many passes to perform. Set i1 to 0 to prevent any
such aggregations. Set i1 to a positive integer to specify the precise number
of passes.

Aggregation can yield a substantial reduction in the size of some linear
programs, such as network flow LPs in which many nodes have only one
incoming or one outgoing arc. If i2 > 2, however, aggregation may also
increase the number of nonzero constraint coefficients, resulting in more
work at each simplex iteration. The default setting of i2=10 usually makes a
good tradeoff between reduction in size and increase in nonzeroes, but you
may want to experiment with lower values if CPLEX reports that many
aggregations have been made. If CPLEX consistently reports that no
aggregations can be performed, on the other hand, you can set i1 to 0 to turn
off the aggregation routine and save memory and processing time.

To request a report of the number of aggregations, see the prestats
directive later in this section.

dependency=i (default 0)

By default (i=0), during the presolve phase, CPLEX does not check for or
identify dependent rows in the coefficient matrix. Setting i=1 turns on the
dependency checker.

AMPL User Guide 27

predual=i (default 0)

By default, after presolving the problem CPLEX decides whether to solve
the primal or dual problem based on which problem it determines it can
solve faster. Setting i=1 explicitly instructs CPLEX to solve the dual
problem, while setting it to -1 explicitly instructs CPLEX to solve the primal
problem. Regardless of the problem CPLEX solves internally, it still reports
primal solution values. This is often a useful technique for problems with
more constraints than variables.

prereduce=i (default 3)

This directive determines whether primal reductions, dual reductions or both
are performed during preprocessing. By default, CPLEX performs both. Set
this directive to 0 to prevent all reductions, 1 to only perform primal
reductions, and 2 to only perform dual reductions. While the default usually
suffices, performing only one kind or the other may be useful when
diagnosing infeasibility or unboundedness.

presolve=i (default 1)

Prior to invoking any simplex algorithm, CPLEX applies transformations
that reduce the size of the linear program without changing its optimal
solution. In this presolve phase, constraints that involve only one non-fixed
variable are removed; either the variable is fixed and also dropped (for an
equality constraint) or a simple bound for the variable is recorded (for an
inequality). Each inequality constraint is subjected to a simple test to
determine if there exists any setting of the variables (within their bounds)
that can violate it; if not, it is dropped as nonconstraining. Further iterative
tests attempt to tighten the bounds on primal and dual variables, possibly
causing additional variables to be fixed, and additional constraints to be
dropped.

AMPL’s presolve phase, as described in Section 10.2 of the AMPL book,
also performs many (but not all) of these transformations. To see how many
variables and constraints are eliminated by AMPL’s presolve, set option
show_stats to 1. To suppress AMPL’s presolver, so that all presolving is
done in CPLEX, set option presolve to 0.

CPLEX’s presolve can be suppressed by changing i to 0 from its default of 1.
In rare cases the presolved linear program, although smaller, is actually
harder to solve. Thus if CPLEX reports that many variables and constraints
have been eliminated by presolve, you may want to compare runs with and
without presolve. On the other hand, if CPLEX consistently reports that
presolve eliminates no variables or constraints, you can save a little
processing time by turning presolve off.

To request a report of the number of eliminations performed by presolve, see
the prestats directive below.

prestats=i (default 0)

When this directive is changed to 1 from its default of 0, CPLEX reports on
the activity of the aggregation and presolve routines:

28 AMPL User Guide

Presolve eliminated 1645 rows and 2715 columns
in 3 passes.
Aggregator did 22 substitutions.
Presolve Time = 1.70 sec.

During the development of a large or complex model, it is a good idea to
monitor this report, and to turn on its AMPL counterpart by setting option
show_stats to 1. An unexpectedly large number of eliminated variables
or constraints may indicate that the formulation is in error or can be
substantially simplified.

scale=i (default 0)

This directive governs the scaling of the coefficient matrix. The default
value of i=0 implements an equilibration scaling method, which is generally
very effective. You can turn off the default scaling by setting i=-1. A value
of 1 invokes a modified, more aggressive scaling method that can produce
improvements on some problems. (Since CPLEX has internal logic that
determines when it need not scale a problem, setting the scale directive to –1
rarely improves performance.)

6.4 Directives for Controlling the Simplex Algorithm
Several key strategies of the primal and dual simplex algorithms can be
changed through CPLEX directives. If you are repeatedly solving a class of
linear programs that requires substantial computer time, experimentation
with alternative strategies can be worthwhile.

advance=i (default 1)

By default (i=1) CPLEX uses existing basis status information (see the
discussion on basis statuses in Section 9.2) to begin optimization. To ignore
basis statuses, set i=0.

basisinterval=i (default 50000)

This directive controls the frequency with which CPLEX automatically
writes a basis file to disk. This is a safeguard against unanticipated events
such as power failures interrupting a run. By using the resulting basis file in
conjunction with the xxxstart directive (described below), one can
resume the run from the most recently written basis files.

crash=i (default 1)

This directive governs CPLEX’s procedure for choosing an initial basis,
except when the basis is read from a file as specified by the directive
readbasis described below. A value of i=0 causes the objective to be
ignored in choosing the basis, while values of −1 and 1 select two different
heuristics for taking the objective into account. The best setting for your
purposes will depend on the specific characteristics of the linear programs
you are solving, and must be determined through experimentation.

pgradient=i (default 0)

AMPL User Guide 29

This directive governs the primal simplex algorithm’s choice of a “pricing”
procedure that determines which variable is selected to enter the basis at
each iteration. Your choice is likely to make a substantial difference to the
tradeoff between computational time per iteration and the number of
iterations. As a rule of thumb, if the number of iterations to solve your linear
program exceeds three times the number of constraints, you should consider
experimenting with alternative pricing procedures.

The recognized values of i are as follows:

−1 Reduced-cost pricing

0 Hybrid reduced-cost/devex pricing

1 Devex pricing

2 Steepest-edge pricing

3 Steepest-edge pricing with slack initial norms

4 Full reduced-cost pricing

The “reduced cost” procedures are sophisticated versions of the pricing rules
most often described in textbooks. The “devex” and “steepest edge” alterna-
tives employ more elaborate computations, which can better predict the
improvement to the objective offered by each candidate variable for entering
the basis.

Compared to the default of i = 0, the less compute-intensive reduced-cost
pricing (i= −1) may be preferred if your problems are small or easy, or are
unusually dense  say, 20 to 30 nonzeroes per column. Conversely, if you
have more difficult problems which take many iterations to complete Phase
I, consider using devex pricing (i=1). Each iteration may consume more
time, but the lower number of total iterations may lead to a substantial
overall reduction in time. Do not use devex pricing if your problem has
many variables and relatively few constraints, however, as the number of
calculations required per iteration in this situation is usually too large to
afford any advantage.

If devex pricing helps, you may wish to try steepest-edge pricing (i=2). This
alternative incurs a substantial initialization cost, and is computationally the
most expensive per iteration, but may dramatically reduce the number of
iterations so as to produce the best results on exceptionally difficult
problems. The variant using slack norms (i=3) is a compromise that
sidesteps the initialization cost; it is most likely to be advantageous for
relatively easy problems that have a low number of iterations or time per
iteration.

Full reduced-cost pricing (i=4) is a variant that computes a reduced cost for
every variable, and selects as entering variable one having most negative
reduced cost (or most positive, as appropriate). Compared to CPLEX’s
standard reduced-cost pricing (i= −1), full reduced-cost pricing takes more
time per iteration, but in rare cases reduces the number of iterations more
than enough to compensate. This alternative is supplied mainly for

30 AMPL User Guide

completeness, as it is proposed in many textbook discussions of the simplex
algorithm.

dgradient=i (default 0)

This directive governs the dual simplex algorithm’s choice of a “pricing”
procedure that determines which variable is selected to leave the basis at
each iteration. Your choice is likely to make a substantial difference to the
tradeoff between computational time per iteration and the number of
iterations. As a rule of thumb, if the number of iterations to solve your linear
program exceeds three times the number of constraints, you should consider
experimenting with alternative pricing procedures.

The recognized values of i are as follows:

0 Pricing procedure determined automatically

1 Standard dual pricing

2 Steepest-edge pricing

3 Steepest-edge pricing in slack space

4 Steepest-edge pricing with unit initial norms

Standard dual pricing (i=1), described in many textbooks, selects as leaving
variable one that is farthest outside its bounds. The three “steepest edge”
alternatives employ more elaborate computations, which can better predict
the improvement to the objective offered by each candidate for leaving
variable. The default (i=0) lets CPLEX choose a dual pricing procedure
through an internal heuristic based on problem characteristics.

Steepest-edge pricing involves an extra initialization cost, but its extra cost
per iteration is much less in the dual simplex algorithm than in the primal.
Thus if you find that your problems solve faster using the dual simplex, you
should consider experimenting with the steepest-edge procedures. The
standard procedure (i=2) and the variant “in slack space” (i=3) have similar
computational costs; often their overall performance is similar as well,
though one or the other can be advantageous for particular applications. The
variant using “unit initial norms” (i=4) is a compromise that sidesteps the
initialization cost; it is most likely to be advantageous for relatively easy
problems that have a low number of iterations or time per iteration.

pdswitch=i (default 0)

This directive determines whether a switch of algorithms will be made when
undoing perturbations or shifts that may occur during execution of the
Primal or Dual Simplex algorithm. By default, CPLEX automatically
decides whether to switch algorithms. Consider setting this directive to 1 if
you observe many cycles of removing perturbations or shifts at the end of the
optimization. Set it to -1 to inhibit switching.

pricing=i (default 0)

To promote efficiency, when using reduced-cost pricing in primal simplex,
CPLEX considers only a subset of the nonbasic variables as candidates to
enter the basis. The default of i=0 selects a heuristic that dynamically

AMPL User Guide 31

determines the size of the candidate list, taking problem dimensions into
account. You can manually set the size of this list to i>0, but only very
rarely will this improve performance.

refactor=i (default 0)

This directive specifies the number of iterations between refactorizations of
the basis matrix.

At the default setting of i=0, CPLEX automatically calculates a refactoriza-
tion frequency by a heuristic formula. You can determine the frequency that
CPLEX is using by setting the display directive (described below) to 1.
Since each update to the factorization uses more memory, CPLEX may
reduce the factorization frequency if memory is low. In extreme cases, the
basis may have to be refactored every few iterations and the algorithm will
be very slow.

Given adequate memory, CPLEX’s performance is relatively insensitive to
changes in refactorization frequency. For a few extremely large, difficult
problems you may be able to improve performance by reducing i from the
value that CPLEX chooses.

netfind=i (default 1)

This directives governs the method used by the CPLEX network optimizer to
extract a network from the linear program. The value of i influences the size
of the network extracted, potentially reducing optimization time. The default
value (i=1) extracts only the natural network from the problem. CPLEX
then invokes its network simplex method on the extracted network. In some
cases, CPLEX can extract a larger network by multiplying rows by −1
(reflection scaling) and rescaling constraints and variables so that more
matrix coefficients are plus or minus 1. Setting the netfind directive to 2
enables reflection scaling only, while setting it to 3 allows reflection scaling
and general scaling.

simthreads=i

This directive only applies to users of parallel CPLEX solvers. It specifies
the number of parallel processes used during the simplex method
optimization. The default value depends on the number of threads licensed,
and the ability of the invoked algorithm to run in parallel. For example, the
dual simplex method can exploit parallel processing (on certain platforms),
while the primal simplex method cannot.

xxxstart=i (default 0)

Set this parameter to 1 to instruct CPLEX to start the optimization from one
of the .xxx format basis files generated by CPLEX when it last solved this
problem (see the description of the basisinterval directive above for
more information). Note that these .xxx format files are for the presolved
problem, so one should not specify .xxx files in readbasis and
writebasis directives.

32 AMPL User Guide

6.5 Directives for Controlling the Barrier Algorithm
Several key strategies of the barrier algorithm can be changed through
CPLEX directives. If you are repeatedly solving a class of linear programs
that requires substantial computer time, experimentation with alternative
strategies can be worthwhile.

baralg=i (default 0)

The automatically determined choice of barrier algorithm (i1=0) is usually
the fastest. However, on primal- or dual-infeasible problems, the
infeasibility-estimate start algorithm (i1=1) or the infeasibility-constant start
algorithm (i1=2) may improve numerical stability, possibly at the cost of
speed. Setting i1=3 selects the standard barrier algorithm.

bargrowth=r (default 1e+6)

This directive is used to detect unbounded optimal faces. At higher values,
the barrier algorithm will be less likely to conclude that the problem has an
unbounded optimal face, but more likely to have numerical difficulties if the
problem does have an unbounded face. Any positive number is acceptable
input.

barcorr=i (default –1)

CPLEX may perform centering corrections if it encounters numerical
difficulties during the barrier method optimization. By default (i=−1) the
Barrier Solver automatically computes an estimate for the maximum number
of centering corrections done at each iteration. If the automatic estimate is
computed to be 0, setting the value to a positive integer may improve the
numerical stability of the algorithm, probably at the expense of computation
time.

barobjrange=r (default 1e+15)

This directive sets the maximum absolute value of the objective function.
CPLEX’s barrier algorithm looks at this value to detect unbounded
problems. Any positive value is acceptable input. However, care should be
taken to avoid choosing a value so small that CPLEX will conclude a
problem is unbounded when it is not.

barstart=i (default 1)

This directive controls the starting point CPLEX uses to initiate the barrier
method. The default setting of 1 will suffice for most problems. Consider
other values (2, 3 and 4) if the barrier method appears to converge slowly, or
when the predual directive is specified.

barthreads=i

This directive only applies to users of parallel CPLEX solvers. It specifies
the number of parallel processes used during the barrier method
optimization. The default value depends on the number of threads licensed.

AMPL User Guide 33

barvarup=r (default 1e+20)

This directive sets the upper bound for all variables that have infinite upper
bounds. It is used to prevent difficulties associated with unbounded optimal
faces. Any positive value less then or equal to 1e+20 is acceptable input.
However, care should be taken to avoid choosing a value so small that
CPLEX concludes that a problem has an unbounded optimal face when it
does not.

comptol=r (default 1e−8)

This directive specifies the complementarity tolerance used by the barrier
algorithm to test convergence. The barrier algorithm will terminate with an
optimal solution if the relative complementarity is smaller than this value.
Any positive number larger than 1e−10 is acceptable input.

crossover=i (default 1)

On a linear problem, by default (i=1) CPLEX initiates the “crossover”
algorithm to convert the barrier solution to a basic (or vertex) solution using
a primal simplex-like method. If i=2, a dual simplex-like method is used for
the crossover. The crossover algorithm can be turned off by setting i=0.

densecol=i (default 0)

CPLEX uses this directive to distinguish dense columns in the constraint
matrix. Because barrier algorithm performance can improve dramatically if
dense columns are treated separately, changing this value may improve opti-
mization time. Columns with more nonzeros than this setting are considered
to be dense. If left at the default value, CPLEX will automatically determine
a value, considering factors such as the size of the problem. Any
nonnegative integer is acceptable input.

ordering=i (default 0)

This directive selects the method used to permute the rows of the constraint
matrix in order to reduce fill in the Cholesky factor. There is a trade-off
between ordering speed and sparsity of the Cholesky factor. The automatic
default setting usually chooses the best ordering for the problem.

The approximate minimum degree (AMD) algorithm (i=1) balances speed
and fill. The approximate minimum fill (AMF) algorithm (i=2) usually
generates slightly better orderings than AMD, at the cost of more ordering
run-time. The nested dissection (ND) algorithm, triggered by using i=3
sometimes reduces Barrier run-time dramatically – ten-fold reductions have
been observed for some problems. This option sometimes produces worse
orderings, though, and it requires much more ordering run-time.

6.6 Directives for Improving Stability
CPLEX is highly robust and has been designed to avoid problems such as
degenerate stalling and numerical inaccuracy that can occur in the simplex
algorithm. However, some linear programs can benefit from adjustments to
the following directives if difficulties are encountered.

34 AMPL User Guide

doperturb=i1 (default 0)

perturbation=r (default 1.0e−6)

perturblimit=i2 (default 0)

The simplex algorithm tends to make very slow progress when it encounters
solutions that are highly degenerate (in the sense of having many basic
variables lying at one of their bounds, rather than between them). When
CPLEX detects degenerate stalling, it automatically introduces a
perturbation that expands the bounds on every variable by a small amount,
thereby creating a different but closely related problem. Generally, CPLEX
can make faster progress on this less constrained problem; once optimality is
indicated, the perturbation is removed by resetting the bounds to their
original values.

The value of r determines the size of the perturbation. If you receive
messages from CPLEX indicating that the linear program has been perturbed
more than once, r is probably too large; reduce it to a level where only one
perturbation is required.

The default doperturb value of i1=0 selects CPLEX’s automatic perturb-
ation strategy. If an automatic perturbation occurs early in the solution
process, consider setting i1=1 to select perturbation at the outset. This
alternative will save the time of first allowing the optimization to stall before
activating the perturbation mechanism, but is useful only rarely, for
extremely degenerate problems.

The perturblimit parameter governs the number of stalled iterations CPLEX
allows before perturbing the problem. The default value of i2=0 causes
CPLEX to determine this number based on the characteristics of the
particular problem being solved. Setting i2 to a positive integer value
identifies a specific number of stalled iterations to tolerate before perturbing
the problem.

feasibility=r1 (default 1.0e−6)

markowitz=r2 (default 0.01)

optimality=r3 (default 1.0e−6)

If a problem is making slow progress through Phase I, or repeatedly becomes
infeasible during Phase II, numerical difficulties have arisen. Adjusting the
algorithmic tolerances controlled by these directives may help. Decreasing
the feasibility tolerance, increasing the optimality tolerance and/or
increasing the Markowitz tolerance will typically improve numerical
behavior.

The feasibility tolerance r1>0 specifies the degree to which a linear
program’s basic variables may violate their bounds. You may wish to lower
r1 after finding an optimal solution if there is any doubt that the solution is
truly optimal; but if it is set too low, CPLEX may falsely conclude that the
problem has no feasible solution. Valid values for r1 lie between 1e−9 and
0.1.

AMPL User Guide 35

The Markowitz threshold r2<1 influences the order in which variables are
eliminated during basis factorization. Increasing r2 may yield a more
accurate factorization, and consequently more accurate computations during
iterations of the simplex algorithm. Too large a value may produce an
inefficiently dense factorization, however. Valid values for r2 lie between
0.0001 and 0.99999.

The optimality tolerance r3>0 specifies how closely the optimality (or dual
feasibility) conditions must be satisfied for CPLEX to declare an optimal
solution. Valid values for r3 lie between 1e−9 and 0.01.

6.7 Directives for Starting and Stopping
Normally CPLEX uses an internal procedure to determine a starting point for
the simplex algorithm, then iterates to optimality. The following directives
override these conventions so that you can start from a saved basis, and can
stop when a certain criterion is satisfied.

Command-line versions of CPLEX for AMPL can also be stopped by using
“break” (typically, by pressing the “Control” and “C” keys simultaneously).
The best solution found so far is returned.

bariterlim=i (default problem dependent)

CPLEX stops after i barrier method iterations and returns its current
solution, whether or not it has determined that the solution is optimal.

lpiterlim=i (default 2.1e+9 or larger)

CPLEX stops after i simplex method iterations and returns its current solu-
tion, whether or not it has determined that the solution is optimal.

lowerobj=r1 (default −1.0e+75)

upperobj=r2 (default +1.0e+75)

CPLEX stops at the first iteration where the solution is feasible in the
constraints, and the objective value is below r1 or above r2. At their default
values these directives have no practical effect. Setting r1 (for a
minimization) or r2 (for a maximization) to a “good” value for the objective
will cause CPLEX to stop as soon as it achieves this value.

readbasis=f1

writebasis=f2

Current versions do not require you to explicitly save the basis to hot-start
CPLEX – variable status is automatically stored and used between CPLEX
invocations. The readbasis and writebasis directives are included
for backward compatibility with previous versions of CPLEX for AMPL,
which did not use variable status information.

If the readbasis directive is specified, then the initial basis is instead read
from the file f1, which must also be in the standard MPS basis format. This
basis determines the initial solution.

36 AMPL User Guide

If the writebasis directive is specified, CPLEX writes a record of the
final simplex basis to the file named f2, in the standard MPS basis format.
Normally this is an optimal basis, but it may be otherwise if an optimum
does not exist or could not be found by the chosen algorithm, or if the
iterations were terminated prematurely by one of the directives described
below.

readvector=f1

writevector=f2

These directives are used to take a barrier algorithm solution and write it to
or read it from a CPLEX .vec file. Because AMPL always instructs CPLEX
to take its barrier method solution and apply a hybrid method to obtain a
basic solution, this feature can only be used if a barrier iteration limit is
exceeded.

If the readvector directive is specified, CPLEX will read in a .vec file
named f2 and use it to initiate the hybrid crossover method that results in an
optimal basic solution. Note that CPLEX will not perform additional barrier
iterations after reading in the .vec file. Similarly, if the writeector
directive is specified, CPLEX will write out .vec file named f2.

singular=i (default 10)

CPLEX will attempt to repair the basis matrix up to i times when it finds
evidence that the matrix is singular. Once this limit is exceeded, CPLEX
terminates with the current basis set to the best factorizable basis that has
been found.

timelimit=r (default 1.0e+75)

CPLEX stops after r seconds of computation time and returns its current
solution, whether or not it has determined that the solution is optimal.

6.8 Directives for Controlling Output
When invoked by solve, CPLEX normally returns just a few lines to your
screen to summarize its performance. The following directive lets you
choose a greater amount of output, which may be useful for monitoring the
progress of a long run, or for comparing the effects of other directives on the
detailed behavior on CPLEX’s algorithms. Output normally comes to the
screen, but may be redirected to a file by specifying solve >filename.

bardisplay=i (default 0)

The default choice of i=0 produces a minimal few lines of output from
CPLEX, summarizing the results of a barrier method run.

When i=1, a “log line” recording the barrier iteration number, primal and
dual objective values, and infeasibility information is displayed after each
barrier iteration.

AMPL User Guide 37

When i=2, additional information about the barrier run is provided. This
level of output is occasionally useful for diagnosing problems of degeneracy
or instability in the barrier algorithm.

iisfind=i (default 0)

When i=1 for an infeasible problem, CPLEX returns an irreducible
infeasible subset (IIS) of the constraints and variable bounds. By definition,
members of an IIS have no feasible solution, but dropping any one of them
permits a solution to be found to the remaining ones. Clearly, knowing the
composition of an IIS can help localize the source of the infeasibility.

Setting i=2 generates a potentially smaller IIS, at the cost of greater
computation time. When iisfind is used, CPLEX uses the .iis suffix to
specify which variables and constraints are in the IIS, as explained in Section
8.3.

logfile=f1

This directive instructs CPLEX to create a log file named f1 that will contain
output from the optimization. The amount of output in the log file will
depend on other directives, such as the display directive described above.

lpdisplay=i (default 0)

The default choice of i=0 produces a minimal few lines of output from
CPLEX, summarizing the results of the run.

When i=1, a “log line” recording the iteration number and the scaled
infeasibility or objective value is displayed after each refactorization of the
basis matrix. Additional information on the operation of the network
simplex algorithm is also provided, if applicable. This is often the
appropriate setting for tracking the progress of a long run.

When i=2, a log line is displayed after each iteration. This level of output is
occasionally useful for diagnosing problems of degeneracy or instability in
the simplex algorithm.

sensitivity

When specified, this directive instructs CPLEX to output sensitivity ranges
corresponding to the optimal solution. For variables, the suffix .current
provides the corresponding objective function coefficient in the current
problem, and .down and .up specify the smallest and largest values for
which the current basis remains optimal. For constraints, the suffixes apply
to the constant value, or right-hand-side. Details on CPLEX-defined suffixes
are provided in Section 8.

timing=i (default 0)

When this directive is changed to 1 from its default value of 0, a summary of
processing times is displayed to “standard output”:

Input = 0.06 CPU 0.06 Wall
Solve = 6.42 CPU 6.42 Wall
Output = 0.05 CPU 0.05 Wall

38 AMPL User Guide

Input is the time that CPLEX takes to read the problem from a file that has
been written by AMPL. Solve is the time that CPLEX spends trying to solve
the problem. Output is the time that CPLEX takes to write the solution to a
file for AMPL to read. CPU values provide processor time, whereas Wall
values provide elapsed time.

Setting i=2 writes the timing information to “standard error”, and setting i=3
directs the information to both the standard output and the standard error.
(The latter two options are only interesting for Unix CPLEX for AMPL
users.)

version

This directive causes the display of the CPLEX version being used to solve
the problem.

AMPL User Guide 39

7 Using CPLEX for Integer
Programming

7.1 CPLEX Mixed Integer Algorithm
For problems that contain integer variables, CPLEX uses a branch-and-
bound approach. The optimizing algorithm maintains a hierarchy of related
linear programming subproblems, referred to as the search tree, and usually
visualized as branching downward:

There is a subproblem at each node of the tree, and each node is explored by
solving the associated subproblem.

The algorithm starts with just a top (or root) node, whose associated
subproblem is the relaxation of the integer program − the LP that results
when all integrality restrictions are dropped. If this relaxation happened to
have an integer solution, then it would provide an optimal solution to the
integer program. Normally, however, the optimum for the relaxation has
some fractional-valued integer variables. A fractional variable is then
chosen for branching, and two new subproblems are generated, each with
more restrictive bounds for the branching variable. For example, if the
branching variable is binary (or 0-1), one subproblem will have the variable
fixed at zero, the other node will have it fixed at one. In the search tree, the
two new subproblems are represented by two new nodes connected to the
root. Most likely each of these subproblems also has fractional-valued
integer variables, in which case the branching process must be repeated;
successive branchings produce the tree structure shown above.

If there are more than a few integer variables, the branching process has the
potential to create more nodes than any computer can hold. There are two

40 AMPL User Guide

key circumstances, however, in which branching from a particular node can
be discontinued:

• The node’s subproblem has no fractional-valued integer variables. It
thus provides a feasible solution to the original integer program. If this
solution yields a better objective value than any other feasible solution
found so far, it becomes the incumbent, and is saved for future
comparison.

• The node’s subproblem has no feasible solution, or has an optimum that
is worse than a certain cutoff value. Since any subproblems under this
node would be more restricted, they would also either be infeasible or
have an optimum value worse than the cutoff. Thus none of these
subproblems need be considered.

In these cases the node is said to be fathomed. Because subproblems
become more restricted with each branching, the likelihood of fathoming a
node becomes greater as the algorithm gets deeper into the tree. So long as
nodes are not created by branching much faster than they are inactivated by
fathoming, the tree can be kept to a reasonable size.

When no active nodes are left, CPLEX is finished, and it reports the final
incumbent solution back to AMPL. If the cutoff value has been set
throughout the algorithm to the objective value of the current incumbent −
CPLEX’s default strategy − then the reported solution is declared optimal.
Other cutoff options, described below, cannot provide a provably optimal
solution, but may allow the algorithm to finish much faster.

CPLEX’s memory requirement for solving linear subproblems is about the
same as its requirement for linear programs discussed in the previous
section. In the branch-and-bound algorithm, however, each active node of
the tree requires additional memory. The total memory that CPLEX needs to
prove optimality for an integer program can thus be much larger and less
predictable than for a linear program of comparable size.

Because a single integer program generates many LP subproblems, even
small instances can be very compute-intensive and require significant
amounts of memory. In contrast to solving linear programming problems,
where little user intervention is required to obtain optimal results, you may
have to set some of the following directives to get satisfactory results on
integer programs. You can either change the way that the branch-and-bound
algorithms work, or relax the conditions for optimality, as explained in the
two corresponding subsections below. When experimenting with these
possibilities, it is also a good idea to include directives that set stopping
criteria and display informative output; these are described in the next two
subsections. If you consistently fail to receive any useful solution in
response to the “solve” command after a reasonable amount of time, and are
in doubt as to how to proceed, consult the troubleshooting tips at the end of
this section.

AMPL User Guide 41

7.2 Directives for Preprocessing
All of the preprocessing directives described in Using CPLEX for Linear
Programming are also applicable to problems that specify integer-valued
variables. The following directives control additional preprocessing steps
that are applicable to certain mixed integer programs only.

aggcutlim=i (default 3)

This directive controls the number of constraints that can be aggregated for
generating flow cover and mixed integer rounding cuts. In most cases the
default setting of 3 will be satisfactory. Set it to 0 to prevent any
aggregation.

boundstr=i (default −1)

Bound strengthening tightens the bounds on variables in mixed integer
programs. This may enable CPLEX to fix the variable and remove it from
consideration during the branch and bound algorithm. By default (i=−1),
CPLEX automatically decides whether to perform bound strengthening.
This reduction usually improves performance, but occasionally, due to its
iterative nature, takes a long time. In cases where the time required for
bound strengthening outweighs any subsequent reduction in run time, disable
this feature by setting i=0. To turn on bound strengthening, set i=1.

cliquecuts=i1 (default 0)

covercuts=i2 (default 0)

disjcuts=i3 (default 0)

flowcuts=i4 (default 0)

flowpathcuts=i5 (default 0)

fraccuts=i6 (default 0)

gubcuts=i7 (default 0)

impliedcuts=i8 (default 0)

mircuts=i9 (default 0)

Integer programming solve times can often be improved by generating new
constraints (or cuts) based on polyhedral considerations. These additional
constraints tighten the feasible region, reducing the number of fractional
variables to choose from when CPLEX needs to select a branching variable.
CPLEX can generate cuts based on different combinatorial constructs
corresponding to the directives listed above.

By default, CPLEX decides whether to generate cuts. Typically the default
setting yields the best performance. To disable a particular family of cuts, set
its directive to -1. To enable moderate cut generation, set the appropriate
directive to 1. To enable aggressive cut generation, set it to 2. Using more
aggressive cut generation causes CPLEX to make more passes through the
problem to generate cuts. The disjcuts directive also supports a setting of 3
for very aggressive cut generation.

42 AMPL User Guide

 coeffreduce=i (default 2)

Coefficient reduction during the presolve phase typically improves CPLEX’s
performance on integer programs by speeding up the solve times of the LP
subproblems solved in the branch-and-bound algorithm. However, while
coefficient reduction will tighten the LP subproblems, occasionally it makes
them more difficult to solve. So, if CPLEX solves an integer program in a
modest number of nodes, but the LP subproblem at each node consumes
significant amounts of time, solve time may improve by setting i=0 to
disable this feature. The node count may increase, but the savings in time
per node may compensate for the increased node count. The default setting
of i=2 causes CPLEX to perform coefficient reduction whenever possible,
while i=1 will only reduce coefficients to integer values.

cutpass=i (default 0)

This directive controls the number of passes CPLEX performs when
generating cutting planes for a MIP model. By default, CPLEX
automatically determines the number of passes to perform. This setting
should suffice for most problems. Set the cutpass directive to -1 to stop all
cut generation. Set it to a positive integer to specify a particular number of
passes.

cutsfactor=r (default 4.0)

The cutsfactor directive controls the number of additional cuts
generated by CPLEX. While the constraints generated by CPLEX improve
performance in most cases, in some problems the additional memory to store
them and time required to solve the larger LP subproblems may outweigh the
performance gains from the tighter problem formulation. In such cases, use
this directive to limit the number of cuts that CPLEX generates. CPLEX
will generate no more than r times the number of rows in the problem.

fraccand=i (default 200)

This directive limits the number of candidate variables CPLEX will examine
when generating fractional cuts on a MIP model. For most purposes the
default of 200 will be satisfactory.

fracpass=i (default 0)
This directive controls the number of passes CPLEX performs when
generating fractional cuts on a MIP model. The default of 0 instructs
CPLEX to automatically determine the number of passes and should suffice
for most problems. Set it to a positive integer to specify a particular number
of passes.

mipstartstatus=i1 (default 1)

mipstartvalue=i2 (default 1)

These directives control how existing MIP solution information is used by
CPLEX. The default value of i1=1 tells CPLEX to use incoming variable
and constraint statuses. Incoming statuses can be ignored by setting i1=0.

Note however, that mipstartstatus is normally overridden by the
AMPL option send_status, which can take on the following values:

AMPL User Guide 43

0 ⇒ send no solver status values
1 (default) ⇒ send statuses if there are no integer variables
2 ⇒ send statuses even if there are integer variables.

By default (i2=1) variable values are checked to see if they provide an
integer feasible solution before the problem is optimized. If an integer
feasible solution is found, the objective function value is used as a cutoff
during branch-and-bound. To ignore existing values, set i2=0.

prerelax=i (default 0)

Setting i=1 invokes the CPLEX presolve for the linear program associated
with the initial relaxation of a mixed integer program. All other presolve
settings apply. Sometimes additional reductions can be made beyond any
previously performed MIP presolve reductions.

presolvenode=i (default 0)

The presolvenode directive determines how CPLEX applies its presolve to
the LP subproblems at the nodes of the branch and bound tree. By default,
CPLEX decides automatically. Set i=1 to force node presolve. Set i=-1 to
prevent it. The default setting usually works best.

probe=i (default 0)

This directive controls whether CPLEX should perform probing before
solving the MIP. Probing can lead to dramatic reductions in the problem
size, but can also consume large amounts of time. By default (i=0) CPLEX
automatically decides whether to perform probing. To disable probing, set
i=–1. To enable probing, set it to a value of 1, 2 or 3. A larger value results
in an increased level of probing. More probing can lead to greater
reductions in problem size, but also significant increases in probing time.

sos2=i (default 1)

An optimization problem containing piecewise-linear terms may have to be
converted to an equivalent mixed integer program, as explained in section
5.1.1. When i is at its default value of 1, this conversion results in only one
extra variable per piecewise-linear breakpoint. All of the extra variables
associated with a particular piecewise-linear term are marked as belonging
together, so that CPLEX’s branch-and-bound procedure knows to treat them
specially. Variables so marked have come to be known as a “special ordered
set of type 2,” whence the name sos2 for this directive.

When i is changed to 0 from its default of 1, the conversion creates a larger
number of variables, but does not employ the special ordered set feature.
This alternative has no known advantages, and is supplied for completeness
only.

44 AMPL User Guide

7.3 Directives for Algorithmic Control
CPLEX has default values for the algorithmic control directives that often
work well for solving a wide range of mixed integer programs. However, it
is sometimes necessary to specify alternative values for one or more of the
following directives to improve solution times.

You can view each of these directives as corresponding to a particular
decision faced at each step in the branch-and-bound procedure. To be
specific, imagine that an LP subproblem has just been solved. The sequence
of decisions and the corresponding directives are then as follows:

• Branch next from which node in the tree? (backtrack, nodesel)

• Branch by constraining which fractional variable at the selected node?
(mip_priorities, ordertype, varselect; also see
discussion on setting priorities by variable in Section 8.1.)

• Investigate which of a fractional variable’s two resulting branches first?
(branch, rootheuristic, heuristicfreq; also see
discussion on setting branching preference by variable in Section 8.1.)

• Solve the resulting new subproblem by which LP algorithm?
(mipalgorithm)

It is often hard to predict which combination of directives will work best.
Some experimentation is usually required; your knowledge of the problem
structure may also suggest certain choices of branch-and-bound strategy.

backtrack=r (default 0.01)

bbinterval=i1 (default 7)

nodeselect=i2 (default 1)

These directives determine the criterion for choosing the next node from
which to branch, once a feasible integer solution has been found.

Depending on whether i2 is set to 1, 2 or 3, CPLEX associates a value with
each node, and chooses a node based on these values. For i2=1, a node's
value is the bound on the integer optimum that is given by solving the LP
subproblem at that node. For i2=2 or 3, a node's value is an estimate of the
best integer objective that can be achieved by branching from that node;
estimates of node objective values are derived from so-called pseudocosts,
which are in turn derived from the solutions to the LP subproblems. Settings
2 and 3 differ regarding the exact nature of the estimated objective.
Depending on the value at the current (most recently created) active node,
CPLEX either branches from that node, or else backtracks to the node that
has the best bound (i2=1) or best estimate (i2=2 or 3) among all active
nodes.

When used in conjunction with best estimate node selection (i2=2), the
bbinterval setting (i1) controls the interval for selecting the best bound
node. Decreasing this interval may be useful when best estimate finds good

AMPL User Guide 45

solutions but makes little progress moving the bound. Conversely,
increasing i1 may help when the best estimate node selection does not find
any good integer solutions.

The backtracking decision is made by comparing the value (bound or esti-
mate) at the current node with the values at parent nodes in the tree. If the
value of the current node has degraded (increased for a minimization,
decreased for a maximization) by at least a certain amount relative to the
values at parent nodes, then a backtrack is performed. The cutoff for degrad-
ation is determined by an internal heuristic that is regulated by the value of r.

Lower values of r (which can range from 0 to 1) favor backtracking,
resulting in a strategy that is more nearly “breadth first”. The search jumps
around fairly high in the tree, solving somewhat dissimilar subproblems.
Good solutions are likely to be found sooner through this strategy, but the
processing time per node is also greater.

Higher values of r discourage backtracking, yielding a strategy that is more
nearly “depth first”. Successive subproblems are more similar, nodes are
processed faster, and integer solutions are often quickly found deep in the
search tree. Considerable time may be wasted in searching the descendants
of one node, however, before backtracking to a better part of the tree.

The default value of .01 gives a moderately breadth-first search and
represents a good compromise. Lower values often pay off when the LP
subproblems are expensive to solve.

Setting i2 to 0 chooses a pure depth-first strategy, regardless of r. CPLEX
automatically uses this strategy to search for an initial feasible integer
solution at the outset of the branch-and-bound procedure.

branch=i1 (default 0)

heuristicfreq=i3 (default 0)

The branch directive determines the direction in which CPLEX branches
on the selected fractional variable. When branching on a variable x that has
fractional value r, CPLEX creates one subproblem that has the constraint
x>ceil(r) and one that has the constraint x<floor(r); these are the “up branch”
and “down branch” respectively. By default (i1=0) CPLEX uses an internal
heuristic to decide whether it should first process the subproblem on the up
branch or on the down branch. You may instead specify consistent selection
of the up branch (i1=1) or down branch (i1= −1). Sometimes one of these
settings leads the algorithm to examine and discard the “poorer” branches
high in the tree, reducing the tree size and overall solution time. (Branching
control can also be exercised using the .direction suffix described in
Section 8.1.)

Similarly, CPLEX can apply a rounding heuristic at nodes other than the root
node. Use the heuristicfreq directive to specify the frequency with
which CPLEX applies it. This can help find solutions missed using other
settings. The default value (i3=0) instructs CPLEX to use internal logic to
decide when to apply the heuristic. To suppress application of the heuristic

46 AMPL User Guide

at all nodes, let i3= −1. To specify the node frequency with which CPLEX
applies the heuristic, set i3 to a positive integer.

mipalgorithm=i1 (default 2)

mipcrossover=i2 (default 1)

This directive specifies the algorithm, or combination of algorithms, that
CPLEX will apply to solve the LP subproblem at each branch-and-bound
node. The recognized values of i1 are:

0 Dual simplex for a limited number of iterations, then primal simplex

1 Primal simplex

2 Dual simplex, then primal if dual fails

3 Network simplex on the network part of the problem, then dual
simplex (see netopt in section 6.2).

4 Barrier algorithm

5 Dual simplex until the iteration limit, then Barrier

6 Barrier algorithm without crossover

The default strategy uses an internal heuristic to determine when to switch
from dual to primal simplex. It usually performs well, but the other
strategies can significantly reduce the time per node. These settings do not
significantly affect the number of nodes that must be visited during the
search.

When the Barrier algorithm with crossover is used to solve subproblems
(i1=4 or 5), by default (i2=1) CPLEX uses primal simplex for the crossover.
In certain cases, dual simplex (i2=2) may be faster.

option mip_priorities ’v1 i1 v2 i2 ...’ ;

From CPLEX 7.0 onwards, the mip_priorities option has been
superceded by the .priority suffix. Please see Section 8.1 for a
discussion of setting priorities by individual variable.

mipemphasis=i (default 0)

This directive determines whether CPLEX emphasizes searching for an
optimal solution or trying to find a good solution quickly. By default,
CPLEX tries to find the true optimal solution to the problem. However, for
some problems searching for the optimal solution may reduce the number of
integer feasible solutions found. For problems where finding good solutions
as quickly as possible is more important than finding the optimal one, set the
mipemphasis directive to one. Otherwise, leave this directive at its default
value of 0.

mipthreads=i

This directive only applies to users of parallel CPLEX solvers. It specifies
the number of parallel processes used during the branch-and-bound
optimization. The default value depends on the number of threads licensed.

AMPL User Guide 47

nodefile=i (default 1)

nodefilelim=r (default 1e+75)

nodefiledir=f

The list of unprocessed nodes in the branch and bound tree typically
dominates CPLEX’s memory usage when solving integer programs. A
setting of 0 for the nodefile directive causes CPLEX to store all nodes in
physical memory. The default value of 1 creates a compressed version of the
node file in memory.

Writing nodes to disk (i=2,3) enables CPLEX to process more nodes before
running out of memory. This is typically more efficient than relying on the
operating system’s generic swapping procedure. If i=2, an uncompressed
node file is written to disk. Compressing the file (i=3) adds computation
time, but allows more efficient use of memory.

When the nodefile directive instructs CPLEX to write nodes to a node
file, the nodefilelim directive specifies the maximum file size. The
default is infinite, which means CPLEX will continue to write nodes to disk
if physical memory is not available until it either exhausts available disk
space, solves the problem, or encounters some other limit.

Disk node files are created in the temporary directory specified by the value
of the nodefiledir directive. If no value is specified, the directory
specified by the TMPDIR (on Unix) or TMP (on Windows) environment
variable is used. If TMPDIR or TMP are not set either, the current working
directory is used. Node files are deleted automatically when CPLEX
terminates normally.

ordertype=i (default 0)

CPLEX can automatically generate certain priority orders – which determine
the choice of branching variable – based on specific problem features. Use
ordertype to specify the type of priority order. The default value (i=0)
bypasses order generation. Setting i=1 generates a priority order where
variables with larger costs receive higher priority. Setting i=2 generates a
priority order where variables with smaller bound ranges receive higher
priority. This setting tends to be useful for models with binary variables that
represent a logical decision and associated general integer variables that
represent resource levels enabled by the outcome of the decision.

Setting i=3 tends to help set covering problems. In such problems setting a
binary variable to 1 covers a group of rows, but incurs a cost. Binary
variables with smaller costs per row covered are good choices to set to 1. An
i value of 3 gives higher priority to variables with smaller cost per
coefficient count. This tends to identify such binary variables quickly.

plconpri=i1 (default 1)

plobjpri=i2 (default 2)

Certain piecewise-linear expressions in AMPL models give rise to auxiliary
CPLEX variables in groups known as “special ordered sets of type 2”. Sos2
variables were discussed in the entry for the sos2 directive above.

48 AMPL User Guide

CPLEX takes i1 to be the branching priority for all sos2 variables that arise
from piecewise-linearities in the constraints, and i2 to be the branching
priority for all sos2 variables that arise from piecewise-linearities in the
objective. A higher number indicates a higher priority.

startalgorithm=i (default 2)

This directive specifies the algorithm that CPLEX will apply to solve the
initial LP relaxation. The recognized values of i are:

1 Primal simplex

2 Dual simplex

3 Network simplex on the network part of the problem, then dual
simplex (see netopt in the section on Directives for Problem and
Algorithm Selection)

4 Barrier algorithm

5 Dual simplex until the iteration limit is reached, then Barrier

6 Barrier algorithm without crossover

strongcand=i1 (default 10)

strongit=i2 (default 0)

strongthreads=i3

These three directives impact strong branching (see varsel directive
below).

The strongcand directive controls the size of the candidate list for strong
branching. The strongit parameter limits the number of iterations
performed on each branch in strong branching. Normally the default setting
(i2=0), which allows CPLEX to determine the iteration parameter, will
suffice. You can use low values of i1 and i2 if the time per strong branching
node appears excessive; you may reduce the time per node yet still maintain
the performance. Conversely, if the time per node is reasonable but CPLEX
makes limited progress, consider increasing the values.

Users of parallel CPLEX can control the number of threads used in strong
branching using the strongthreads directive. The default value depends on
the number of threads licensed and the ability of the invoked algorithm to
run in parallel.

varselect=i (default 0)

Once a node has been selected for branching, this directive determines how
CPLEX chooses a fractional-valued variable to branch on. By default (i=0)
the choice is made by an internal heuristic based on the problem and its
progress.

The maximum infeasibility rule (i=1) chooses the variable with the largest
fractional part. This forces larger changes earlier in the tree, and tends to
produce faster overall times to reach the optimal integer solution.

AMPL User Guide 49

The minimum infeasibility rule (i= –1) chooses the variable with the smallest
fractional part. This may lead more quickly to a first integer feasible
solution, but will usually be slower overall to reach the optimal integer
solution.

A pseudocost rule (i=2) estimates the worsening of the objective that will
result by forcing each fractional variable to an adjacent integer, and uses
these “degradations” in an internal heuristic for choosing a variable to
branch on. This setting tends to be most effective when the problem
embodies complex tradeoffs, and the dual variables have an economic
interpretation.

Strong branching (i=3) considers several different branches by actually
solving subproblems for different choices of branching variable. The
variable yielding the best results is then chosen. Strong branching requires
more time for each node, but usually fewer nodes to solve the problem. This
strategy works especially well on binary problems where the number of
binary variables is significantly greater than the number of rows. It is also
useful when memory is limited: creating fewer nodes requires less memory.

7.4 Directives for Relaxing Optimality
In dealing with a difficult integer program, you may need to settle for a
“good” solution rather than a provably optimal one. The following
directives offer various ways of weakening the optimality criterion for
CPLEX’s branch-and-bound algorithm.

absmipgap=r1 (default 0.0)

mipgap=r2 (default 1.0e−4)

The optimal value of your integer program is bounded on one side by the
best integer objective value found so far, and on the other side by a value
deduced from all the node subproblems solved so far. The search is
terminated when either

| best node − best integer | < r1

or

| best node − best integer | / (1.0 + | best node |) < r2.

Thus the returned objective value will be no more than r1 from the optimum,
and will also be within about 100 r2 percent of the optimum if the optimal
value is significantly greater than 1 in magnitude.

Increasing r1 or r2 allows a solution further from optimum to be accepted.
The search may be significantly shortened as a result. Valid values for r2 lie
between 1e−9 and 1.0.

integrality=r (default 1.0e−5)

In the optimal solution to a subproblem, a variable is considered to have an
integral value if it lies within r of an integer. For some problems, increasing
r (it has to be at least 1e−9) may give an acceptable solution faster.

50 AMPL User Guide

lowercutoff=r1 (default −1.0e75)

uppercutoff=r2 (default 1.0e75)

These directives specify alternative cutoff values; a node is fathomed if its
subproblem has an objective less than r1 (for maximization problems) or
greater than r2 (for minimization problems). As a result any solution
returned by CPLEX will have an optimal value at least as large as r1 or as
small as r2. This feature can be useful in conjunction with other limits on
the search; but too high a value of r1 or too low a value of r2 may result in
no integer solution being found.

objdifference=r1 (default 0.0)

relobjdiff=r2 (default 0.0)

This directive automatically updates the cutoff to more restrictive values.
Normally the incumbent integer solution’s objective value is used as the
cutoff for subsequent nodes. When r1 > 0, the cutoff is instead the
incumbent’s value −r1 (if minimizing) or +r1 (if maximizing). This forces
the mixed integer optimization to ignore integer solutions that are not at least
r1 better than the one found so far. As a result there tend to be fewer nodes
generated, and the algorithm terminates more quickly; but the true integer
optimum may be missed if its objective value is within r1 of the best integer
objective found.

If r1=0, r2 is used to adjust the objective function value during the
optimization. For a maximization problem, r2 times the absolute value of the
objective function value is added to the best feasible objective value
obtained so far. Similarly, if the objective is to be minimized, r2 times the
absolute value is subtracted from the best-so-far feasible objective value.
Subsequent nodes are ignored if their linear relaxations have optimal values
worse that this adjusted value. Positive values of r2 usually speed the
search, but may cause the true optimum to be missed.

7.5 Directives for Halting and Resuming the Search
There is usually no need to make exhaustive runs to determine the impact of
different search strategies or optimality criteria. While you are
experimenting, consider using one of the directives below to set a stopping
criterion in advance. In each case, the best solution found so far is returned
to AMPL. (As mentioned earlier, using “break” on command-line versions
of CPLEX for AMPL will return the best known solution – for integer
programs, that means the current incumbent.)

You can arrange to save the entire search tree when CPLEX halts, so that the
search may be resumed from where it left off. Directives for this purpose are
also listed below.

endtree=f1

starttree=f2

AMPL User Guide 51

CPLEX progressively allocates more memory for the search tree as the
branch-and-bound procedure creates new nodes; it frees all this memory at
termination. If the endtree directive is specified, CPLEX also writes a
record of the final tree to the file named f1, in a compact binary format.

CPLEX normally starts the branch-and-bound procedure from a tree that
consists only of the root node, as explained at the beginning of this section.
If the starttree directive is specified, then CPLEX instead starts from
the search tree stored in the file named f2. This file must be one that was
previously written, for the same problem, by the endtree directive.

These directives are particularly useful for large and difficult problems that
may take hours or days to solve to optimality. If you would like to look at
the first integer solution that CPLEX finds, for example, you can set
solutionlim=1 together with endtree and any other directives you
like:

ampl: model multmip3.mod;
ampl: data multmip3.dat;
ampl: option solver cplexamp;
ampl: option cplex_options
ampl? ’solutionlim=1 varselect=-1’
ampl? ’ endtree=multmip.tre’;
ampl: solve;

CPLEX 7.0: solutionlim 1
varselect -1
endtree multmip.tre
CPLEX 7.0: mixed-integer solutions limit;
objective 238225
251 simplex iterations
64 branch-and-bound nodes

ampl: display Trans > multmip.so1;

A display of the Trans variables, at the values they take in the first integer
solution, has been directed to the file multmip.sol for future
examination. You could also browse through the values interactively at this
point. When you are ready to continue, you need only set starttree to
the same file as endtree, and make any other changes to the branch-and-
bound directives that you wish. Then give the solve command again:

ampl: option cplex_options
ampl? ’solutionlim=1 varselect=1’
ampl? ’ starttree=multmip.tre’
ampl? ’ endtree=multmip.tre’;
ampl: solve;

CPLEX 7.0: solutionlim 1
varselect 1
starttree multmip.tre
endtree multmip.tre
CPLEX 7.0: mixed-integer solutions limit;
objective 235625

52 AMPL User Guide

596 simplex iterations
124 branch-and-bound nodes

ampl: display Trans > multmip.so2;

CPLEX’s counts of the numbers of iterations and nodes are cumulative.
Since this is a minimization problem, the objective at this second solution is
lower than at the first. To continue past this point with all the same CPLEX
directives, you need only type solve:

ampl: solve;

CPLEX 7.0: solutionlim 1
varselect 1
starttree multmip.tre
endtree multmip.tre
CPLEX 7.0: optimal integer solution; objective
235625
601 simplex iterations
142 branch-and-bound nodes

We see here that the objective value from the second solution (235625) was
optimal, but that CPLEX had to process an additional 18 nodes to prove
optimality. (This is not a fluke. The branch-and-bound procedure must
often examine many nodes to prove optimality after it has found an optimal
solution.)

nodelim=i (default 2.1e9)

The search is terminated after i linear programming subproblems have been
solved. (The default value can vary depending on the hardware.)

solutionlim=i (default 2.1e9)

The search is terminated after i feasible solutions satisfying the integrality
requirements have been found.

timelimit=r (default 1.0e75)

The search is terminated after r seconds of computing time.

treememlim=r (default 128)

CPLEX switches to compressed node storage when the branch-and-bound
search tree reaches a size of r megabytes. You can use the treememlim and
nodefile directives to control when and how CPLEX stores nodes of the
branch-and-bound search tree in physical memory or disk. When used in
conjunction with the nodefilelim directive, you can use this directive to
assure that CPLEX will return with a (possibly less than optimal) solution
rather than terminating with an out-of-memory error.

In general, the default setting should suffice. However, for solving problems
that generate large branch-and-bound trees on computers with more than 128
MB of memory, you may wish to increase the default setting. Note that r
should be set to a few megabytes less than the amount of memory available;
this allows for memory used by the operating system, by other programs, and
by CPLEX and its other data structures. For example, if your computer has
256 megabytes of real memory, you might start by setting r to 248. Using the

AMPL User Guide 53

system’s virtual memory typically is much slower than CPLEX’s own node
file storage scheme, so setting the tree memory limit to a value that uses
system virtual memory only slows performance.

Set the tree memory limit to 1e+75 if you only want CPLEX to store nodes
in physical memory. If you want CPLEX to stop the optimization rather than
compress the nodes after hitting the tree memory limit, specify a value of 0
for the nodefilelim directive. Use the nodefile directive for additional
control of how CPLEX stores the nodes.

7.6 Directives for Controlling Output
When invoked by solve, CPLEX normally returns just a few lines to your
screen to summarize its performance. The following directives let you
choose more output, which may be useful for monitoring the progress of a
long run, or for comparing the effects of other directives on the behavior of
the branch-and-bound algorithm. Output normally comes to the screen, but
may be redirected to a file by specifying solve >filename.

mipdisplay=i1 (default 0)

mipinterval=i2 (default 1)

The default of i1=0 produces a minimal few lines of output from CPLEX,
summarizing the results of the run.

When i1=1, a single “log line” is displayed for every integer solution found.
The information includes the number of nodes processed, and the objective
values of the best integer solution found so far and of the best unprocessed
node subproblem. (The optimal value lies between these two.)

When i1=2, a more detailed log line is displayed once every i2 nodes, as well
as for each node where an integer solution is found. A * indicates lines of
the latter type. The default of i2=1 gives a complete picture of the branch-
and-bound process, which may be instructive for small examples. With a
larger choice of i2, this setting can be very useful for evaluating the progress
of long runs; the log line includes a count of the number of active nodes,
which gives an indication of the rate at which the search tree is growing or
shrinking in memory.

When i1=3, CPLEX also prints information on node cut and node presolve.
The LP iteration log for the root node (i1=4) and for all subproblems (i1=5)
can also be displayed.

timing=i (default 0)

This directive can be used to display a summary of processing times. It
works the same for integer programming as for linear programming, as
described in Using CPLEX for Linear Programming.

54 AMPL User Guide

7.7 Common Difficulties
The following discussion addresses the difficulties most often encountered
in solving integer programs with CPLEX.

7.7.1 Running Out of Memory

The most common difficulty when solving MIP problems is running out of
memory. This problem arises when the branch-and-bound tree becomes so
large that insufficient memory is available to solve an LP subproblem. As
memory gets tight, you may observe warning messages while CPLEX
attempts to navigate through various operations within limited memory. If a
solution is not found shortly, the solutions process will be terminated with an
error termination message.

The tree information saved in memory can be substantial. CPLEX saves a
basis for every unexplored node. When utilizing the best-bound or best
estimate method of node selection, the list of unexplored nodes can become
very long for large or difficult problems. How large the unexplored node list
can become is entirely dependent on the actual amount of physical memory
available, the size of the problem, and the solution algorithm selected.
Certainly increasing the amount of memory available extends the problem
solving capability. Unfortunately, once a problem has failed because of
insufficient memory you cannot project how much further the process
needed to go or how much memory would be required to ultimately solve it.

To avoid out-of-memory failures, we recommend resetting the
treememlim parameter to stop the solution process prior to consuming all
available memory. This limit parameter value should be set to a number
slightly less than the total available memory, which can include the swap
file. Remember that not all installed memory is available - the operating
system and other active processes can reduce the amount of memory
available to CPLEX.

In some cases, even though the current tree size is within system resource
limits, it may be that there is considerable memory fragmentation and as a
result, poor performance because of the way in which the tree was built. To
combat that fragmentation, it can be helpful to write a tree file and resolve,
reading in the tree file.

Some parts of the branch-and-bound tree can be stored in compressed files
when the nodefile directive is used. Storing part of each node in files
will allow more nodes to be explored in a given treememlim limit, but
file access may be slower than physical memory access. This feature may be
especially useful when steepest edge pricing used for subproblem simplex
pricing strategy, because the pricing information consumes a lot of memory.

The best approach to reduce memory usage is to modify the solution process.
Switching to a higher backtrack parameter value and best estimate node
selection strategy (or depth-first search node selection which is even more
extreme) often works. Depth-first search rarely generates a large unexplored
node list since CPLEX will be diving deep into the branch-and-bound tree

AMPL User Guide 55

rather than jumping around within it. This narrowly focused search also
often results in faster individual node processing times. Overall efficiency is
sometimes worse than with best-bound node selection since each branch is
exhaustively searched to the deepest level before fathoming it in favor of
better branches.

Another memory conserving strategy is to use strong branching variable
selection (using the varselect directive). When using strong branching
substantial computational effort is made at each node to determine the best
branching variable. As a result, many fewer nodes are generated reducing
the overall demand on memory. Often, strong branching is faster as well as
using less memory.

On some problems, the automatic generation of cuts results in excessive use
of memory with little benefit in speed. In such cases it is expedient to turn
off cut generation by setting the covers and cliques directives to –1.

7.7.2 Failure To Prove Optimality

One frustrating aspect of the branch-and bound technique for solving MIP
problems is that the solution process can continue long after the best solution
has been found. In these situations the branch-and-bound tree is being
exhaustively searched in an effort to guarantee that the current integer
feasible solution is indeed optimal. Remember that the branch-and-bound
tree may be as large as 2n nodes, where n equals the number of binary
variables. A problem containing only 30 binary variables could produce a
tree having over one billion nodes! If no other stopping criteria have been
set, the process might continue until the search is complete or your
computer’s memory is exhausted.

In general you should set at least one limit on the number of nodes
processed, number of improved solutions found, or total processing time,
using the CPLEX directives given above. Setting limits ensures that the tree
search will terminate in reasonable time. You can then inspect the solution
and, if necessary, re-run the problem using different directive settings.
Consider some of the shortcuts described above for improving performance,
particularly those for relaxing optimality. They may provide you with an
optimal or very nearly optimal solution, even though a proof of optimality
would require more computer resources than you have available.

7.7.3 Difficult MIP Subproblems

Certain classes of MIP problems occasionally produce very difficult
subproblems. The subproblems may be dual degenerate. Or an alternative
algorithm such as primal simplex or barrier may perform better with the
particular model.

If the subproblems are dual degenerate, consider setting mipalgorithm to
choose primal simplex for solving subproblems.

56 AMPL User Guide

If the subproblems are taking many iterations per node to solve, consider
setting dgradient to use a stronger dual-pricing algorithm. Most often,
one would use dual steepest edge pricing.

In cases where the barrier algorithm is selected to solve the initial LP
relaxation, it may be useful to apply it on the subproblems using one of two
options. The first is to use Barrier on all subproblems. Since the Barrier
algorithm can not utilize a basis, often a better choice is to allow the dual
simplex algorithm to run for a predetermined number of iterations before
switching to Barrier. Set the simplex iteration limit to a reasonably low
number of dual iterations and then invoke this hybrid solutions strategy by
setting the mipalgorithm directive to 5. Remember that setting a
simplex iteration limit apples to all invocations of the simplex solvers. If the
iteration limit is set too low, it might prematurely terminate cleanup
iterations sometimes needed at the conclusion of a crossover operation.
Since the dual simplex solver will most often be the best method, specify a
sufficient number of iterations before forcing a switch to Barrier.

For either of the above mipalgorithm strategies, it is beneficial to set the
barrier algorithm option to settings 1 or 2. Either of these non-default
choices is better at detecting infeasibility, a frequent characteristic of MIP
subproblems.

AMPL User Guide 57

8 Defined Suffixes for CPLEX

The most common use of AMPL suffixes is to represent solver result values
that correspond to variables, constraints, and other model components. Yet
only the most standard kinds of results, such as reduced costs (given by
X.rc, where X is a variable name) and slacks (given by C.slack, where C
is a constraint name), are covered by the built-in suffixes.

To allow for solver-specific optimization results, AMPL permits solvers to
define new suffixes and to associate solution result information with them.
Similarly, users can also define suffixes to control the solver. User-defined
suffixes understood by CPLEX and suffixes defined by CPLEX are
described in this section.

8.1 Algorithmic Control
For each integer variable in a problem, CPLEX recognizes a preferred
branching direction and a branching priority, specified by the following two
suffixes:

.direction

.priority

Branching direction preference can be specified for each variable by setting
its .direction suffix to a value between –1 and 1. (Variables not
assigned a suffix value get a default value of zero.) A negative value
indicates a preference for branching “down”, and a positive value indicates a
preference for branching “up”. For variables with .direction at zero, the
branching direction is determined by the branching-related directives
described in Section 7.3. (See explanation of branch-and-bound in Section 7
for a description of branching.)

Each time that CPLEX must choose a fractional-valued integer variable on
which to branch, it gives preference to the fractional variables that have the
highest .priority value. A judicious choice of priorities (any number
between 0 and 9999 is valid) can guide the search in a way that reduces the
number of nodes generated. For example, let us consider a model drawn
from pages 300-301 of the AMPL book:

58 AMPL User Guide

ampl: model models\multmip3.mod;
ampl: data models\multmip3.dat;
ampl: solve;

CPLEX 7.0: optimal integer solution;
objective 235625
601 simplex iterations
91 branch-and-bound nodes

Note that CPLEX takes 91 nodes and 601 simplex iterations to find the
optimal integer solution. Now, let us provide CPLEX with branching
priorities for all variables as well as a preferred branching direction for a
single variable. Note that before we re-run CPLEX, we set
mipstartvalue to discard the existing solution.

ampl: option cplex_options ‘mipstartvalue 0’;
ampl: suffix priority IN,integer,>=0,<=9999;
ampl: suffix direction IN,integer,>=-1,<= 1;
ampl: let {i in ORIG, j in DEST}
ampl? Use[i,j].priority :=
ampl? sum {p in PROD} demand[j,p];
ampl: let Use["GARY","FRE"].direction := -1;
ampl: solve;

CPLEX 7.0: optimal integer solution; objective
235625
446 simplex iterations
64 branch-and-bound nodes

Indeed, CPLEX now requires fewer nodes (64) and fewer simplex iterations
(446) to reach optimality. While this is not a dramatic improvement, larger
cases where directing branch-and-bound in this manner makes the difference
between unsolvability and finding the solution in a few minutes are well-
known.

8.2 Sensitivity Ranging
When the sensitivity directive (described in Section 6.8) is included in
CPLEX’s option list, classical sensitivity ranges are computed and are
returned in the following three suffixes:

.current

.down

.up

Let us illustrate the use of these suffixes using an example model from
Section 4.3 of the AMPL book:

ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: option solver cplexamp;
ampl: option cplex_options 'sensitivity';
ampl: solve;

AMPL User Guide 59

CPLEX 7.0: sensitivity
CPLEX 7.0: optimal solution; objective 515033
18 iterations (1 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

The three lines at the end show the suffix commands executed by AMPL in
response to the results from CPLEX. These commands are invoked
automatically; you do not need to type them.

For variables, suffix .current indicates the objective function coefficient
in the current problem, while .down and .up give the smallest and largest
values of the objective coefficient for which the current simplex basis
remains optimal. (CPLEX returns –1e+20 for .down and 1e+20 for .up to
indicate minus infinity and plus infinity, respectively.)

ampl: display Sell.down, Sell.current,
ampl? Sell.up;

: Sell.down Sell.current Sell.up
:=
bands 1 23.3 25 1e+20
bands 2 25.4 26 1e+20
bands 3 24.9 27 27.5
bands 4 10 27 29.1
coils 1 29.2857 30 30.8571
coils 2 33 35 1e+20
coils 3 35.2857 37 1e+20
coils 4 35.2857 39 1e+20
;

For constraints, the interpretation is similar except that it applies to a
constraint’s constant term (the so-called right-hand side value).

ampl: display time.down, time.current,
ampl? time.up;

: time.down time.current time.up :=
1 37.8071 40 66.3786
2 37.8071 40 47.8571
3 25 32 45
4 30 40 62.5
;

8.3 Diagnosing Infeasibilities
For a linear program that has no feasible solution, you can ask CPLEX to
find an irreducible infeasible subset (or IIS) of the constraints and variable
bounds. By definition, members of an IIS have no feasible solution, but
dropping any one of them permits a solution to be found to the remaining
ones. Clearly, knowing the composition of an IIS can help localize the
source of the infeasibility.

60 AMPL User Guide

The associated suffix is:

.iis

You turn on the IIS finder using the iisfind option described in Section
6.8. An associated option iis_table, set up and displayed automatically
by CPLEX, shows the strings that may be associated with .iis and gives
brief descriptions of what they mean.

The following example shows how IIS finding might be applied to the
infeasible diet problem from chapter 2 of the AMPL book. After solve
detects that there is no feasible solution, it is repeated with the iisfind
directive:

ampl: model diet.mod;
ampl: data diet2.dat;
ampl: option solver cplexamp;
ampl: solve;

CPLEX 7.0: infeasible problem
7 iterations (7 in phase I)

ampl: option cplex_options ’iisfind 1’;
ampl: solve;

CPLEX 7.0: iisfind 1
CPLEX 7.0: infeasible problem
0 iterations

Returning iis of 7 variables and 2
constraints.

suffix iis symbolic OUT;

option iis_table ’\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
’;

You can use display to look at the .iis values that have been returned:

ampl: display _varname, _var.iis, _conname,
ampl? _con.iis;

: _varname _var.iis _conname con.iis
:=
1 "Buy[’BEEF’]" upp "diet[’A’]" non
2 "Buy[’CHK’]" low "diet[’B1’]" non
3 "Buy[’FISH’]" low "diet[’B2’]" low
4 "Buy[’HAM’]" upp "diet[’C’]" non
5 "Buy[’MCH’]" non "diet[’NA’]" upp
6 "Buy[’MTL’]" upp "diet[’CAL’]" non
7 "Buy[’SPG’]" low . .
8 "Buy[’TUR’]" low . .
;

This information indicates that the IIS consists of four lower and three upper
bounds on the variables, plus the constraints providing the lower bound on

AMPL User Guide 61

B2 and the upper bound on NA in the diet. Together these restrictions have
no feasible solution, but dropping any one of them will permit a solution to
be found to the remaining ones. (Of course, in our example, we shouldn’t
actully drop the lower bounds on the Buy variable – we could end up with
negative values. However, we could reduce certain lower bounds to zero.)

8.4 Direction of Unboundedness
For an unbounded linear program – one that has in effect a minimum
objective value of –Infinity or a maximum of +Infinity – the "solution" is
characterized by a feasible point together with a direction of unboundedness
from that point. On return from CPLEX, the values of the variables define
the feasible point. The direction of unboundedness is given by an additional
value associated with each variable through the associated solver-defined
suffix:

.unbdd

An application of the direction of unboundedness can be found in our
example of Benders decomposition applied to a transportation-location
problem. One part of the decomposition scheme is a subproblem obtained
by fixing the variables Build[i], which indicate the warehouses that are to be
built, to trial values build[i].

When all values build[i] are set to zero, no warehouses are built, and the
primal subproblem is infeasible. As a result, the dual formulation of the
subproblem – which always has a feasible solution – is unbounded. When
this dual problem is solved from the AMPL command line, CPLEX returns
the direction of unboundedness in the expected way:

ampl: model trnloc1d.mod;
ampl: data trnloc1.dat;
ampl: problem Sub: Supply_Price, Demand_Price,
ampl? Dual_Ship_Cost, Dual_Ship;
ampl: let {i in ORIG} build[i] := 0;
ampl: option solver cplexamp;
ampl: option cplex_options ’presolve 0’;
ampl: solve;

CPLEX 7.0: presolve 0
CPLEX 7.0: unbounded problem
30 iterations (0 in phase I)
variable.unbdd returned

suffix unbdd OUT;

The suffix message indicates that .unbdd has been created automatically.
You can use this suffix to display the direction of unboundedness, which is
quite simple in this case:

ampl: display Supply_Price.unbdd;

Supply_Price.unbdd [*] :=
 1 -1 6 -1 11 -1 16 -1 21 –1
 2 -1 7 -1 12 -1 17 -1 22 –1

62 AMPL User Guide

 3 -1 8 -1 13 -1 18 -1 23 –1
 4 -1 9 -1 14 -1 19 -1 24 –1
 5 -1 10 -1 15 -1 20 -1 25 -1

;
ampl: display Demand_Price.unbdd;

Demand_Price.unbdd [*] :=
A3 1 A6 1 A8 1 A9 1 B2 1 B4 1
;

AMPL User Guide 63

9 CPLEX Status Codes in AMPL

9.1 Solve Codes
When CPLEX returns control to AMPL following a solve command, built-in
AMPL parameters and an AMPL option provide information about the
outcome of the optimization, as shown below:

ampl: model oil.mod;
ampl: data oil.dat;
ampl: option solver cplexamp;
ampl: display solve_result_num, solve_result;

solve_result_num = -1
solve_result = ’?’

ampl: solve;
CPLEX 7.0: optimal solution; objective
12.20834324
37 iterations (0 in phase I)

ampl: display solve_result_num, solve_result;

solve_result_num = 0
solve_result = solved

ampl: option solve_result_table;

option solve_result_table ’\
0 solved\
100 solved?\
200 infeasible\
300 unbounded\
400 limit\
500 failure\
’;

As shown by the session log above, initially the built-in AMPL parameter
solve_result_num is –1 and parameter solve_result is '?'. The
solve invocation resets these parameters, however, so that they describe
CPLEX’s status at the end of its run − the solve_result_num parameter
by a numeric code and solve_result by a message string. In the

64 AMPL User Guide

example shown, solve_result_num is set to 0 and solve_result
to ’solved’, indicating normal termination.

The AMPL option solve_result_table lists the valid combinations of
solve_result_num and solve_result, for CPLEX. These
combinations should be interpreted as shown below.

Number String Interpretation

0 - 99 solved optimal solution found

100 – 199 solved? optimal solution indicated, but error likely

200 – 299 infeasible constraints cannot be satisfied

300 – 399 unbounded objective can be improved without limit

400 – 499 limit stopped by a limit (such as on iterations)

500 – 599 failure stopped due to solver error

Status ranges are normally used to control algorithmic flow in AMPL scripts,
where solve_result_num can be tested to distinguish among cases that
must be handled in different ways. It is occasionally useful, however, to
make fine distinctions among different solver termination conditions. All
valid solve codes, with the corresponding termination message from CPLEX,
are listed in the table below.

Number Message at termination

0 optimal solution

1 primal has unbounded optimal face

2 optimal integer solution

3 optimal integer solution within mipgap or absmipgap

100 best solution found, primal-dual feasible

200 infeasible problem

201 infeasible with phase II singularities

202 infeasible with phase I singularities

203 optimal with unscaled infeasibilities

204 converged, dual feasible, primal infeasible

205 converged, primal and dual infeasible

206 best solution found, primal infeasible

207 best solution found, primal-dual infeasible

208 infeasible or unbounded in presolve

220 integer infeasible

300 unbounded problem

301 converged, primal feasible, dual infeasible

302 best solution found, dual infeasible

AMPL User Guide 65

400 phase II objective limit exceeded

401 phase II iteration limit

402 phase I iteration limit

403 phase II time limit

404 phase I time limit

405 primal objective limit reached

406 dual objective limit reached

410 node limit with no integer solution

411 time limit with no integer solution

412 treememory limit with no integer solution

420 mixed integer solutions limit

421 node limit with integer solution

422 time limit with integer solution

423 treememory limit with integer solution

500 unrecoverable failure

501 aborted in phase II

502 aborted in phase I

503 aborted in barrier, dual infeasible

504 aborted in barrier, primal infeasible

505 aborted in barrier, primal and dual infeasible

506 aborted in barrier, primal and dual feasible

507 aborted in crossover

510 unrecoverable failure with no integer solution

511 aborted, no integer solution

520 unrecoverable failure with integer solution

521 aborted, integer solution exists

522 integer optimal with unscaled infeasibilities

523 out of memory, no tree; solution may exist

9.2 Basis Status
Following optimization, CPLEX also returns an individual status for each
variable and constraint. This feature is intended mainly for reporting the
basis status of variables after a linear program is solved either by the simplex
method, or by an interior-point (barrier) method followed by a “crossover”
routine. In addition to the variables declared by var statements in an AMPL
model, solvers also define "slack" or "artificial" variables that are associated

66 AMPL User Guide

with constraints. Solver statuses for these latter variables are defined in a
similar way.

The major use of solver status values from an optimal basic solution is to
provide a good starting point for the next optimization run, possibly after a
data change.

You can refer to a variable’s solver status by appending .sstatus to its
name. Initially, when no problem has yet been solved, all variables have the
status none. After an invocation of a simplex solver, the same display lists
the statuses of the variables at the optimal basic solution. For example,
consider the following:

ampl: model oil.mod;
ampl: data oil.dat;
ampl: option solver cplex;
ampl: solve;

CPLEX 7.0: optimal solution; objective
12.20834324
37 iterations (0 in phase I)

ampl: option sstatus_table;

option sstatus_table ’\
0 none no status assigned\
1 bas basic\
2 sup superbasic\
3 low nonbasic <= (normally =) lower bound\
4 upp nonbasic >= (normally =) upper bound\
5 equ nonbasic at equal lower and upper bounds\
6 btw nonbasic between bounds\
’;

ampl: display InCr.sstatus;

InCr.sstatus [*] :=
MID_C bas
W_TEX low
;

A table of the recognized CPLEX status values is stored in the AMPL option
sstatus_table displayed above. Numbers and short strings representing
status values are given in the first two columns. (The numbers are mainly
for communication between AMPL and CPLEX, though you can access
them by using the suffix .sstatus_num in place of .sstatus.) The
entries in the third column are comments.

The output of the display command shows that variable InCr[‘MID_C’] is in
the basis and InCr[‘W_TEX’] at its lower bound at optimality.

You can change a variable’s basis status using AMPL’s “let” command.
This may be useful in instances where you want to provide an initial basis to
jump-start CPLEX.

AMPL User Guide 67

Appendix A CPLEX Synonyms

The following list contains alternative names for certain CPLEX
directives. The use of primary names is recommended.

Synonym Primary Directive
agglim aggfill

dense densecol

display lpdisplay

doperturb perturb

endbasis writebasis

endvector writevector

growth bargrowth

heuristic rootheuristic

iterations lpiterlim

mipsolutions solutionlim

nodes nodelim

nodesel nodeselect

startbasis readbasis

startvector readvector

subalgorithm mipalgorithm

time timelimit

treememory treememlim

varsel Varselect

AMPL User Guide 68

Index of CPLEX
Directives

.

.current, 34, 56

.direction, 55

.down, 34, 56

.iis, 34, 57

.iis_table, 58

.priority, 55

.unbdd, 59

.up, 34, 56

A
absmipgap, 46
advance, 26
aggcutlim, 38
aggfill, 24
aggregate, 24

B
backtrack, 42
baralg, 29
barcorr, 29
bardisplay, 33
bargrowth, 29
bariterlim, 32
barobjrange, 30
baropt, 22
barstart, 30
barthreads, 30
barvarup, 30
basisinterval, 26
bbinterval, 42
boundstr, 39
branch, 43

C
cliquecuts, 39
coeffreduce, 39
comptol, 30
covercuts, 39
crash, 26
crossover, 30
cutpass, 40
cutsfactor, 40

D
densecol, 30
dependency, 24
dgradient, 27
disjcuts, 39
doperturb, 31
dual, 22
dualopt, 22
dualthresh, 22

E
endtree, 48

F
feasibility, 31
flowcuts, 39
flowpathcuts, 39
fraccand, 40
fraccuts, 39
fracpass, 40

G
gubcuts, 39

H
heuristicfreq, 43

I
iisfind, 34
impliedcuts, 39
integrality, 47

L
logfile, 34
lowercutoff, 47
lowerobj, 32
lpdisplay, 34
lpiterlim, 32

AMPL User Guide 69

M
markowitz, 31
maximize, 23
minimize, 23
mip_priorities, 44
mipalgorithm, 43
mipcrossover, 43
mipdisplay, 50
mipemphasis, 44
mipgap, 46
mipinterval, 50
mipstartstatus, 40
mipstartvalue, 40
mipthreads, 44
mircuts, 39

N
netfind, 28
netopt, 23
nodefile, 44
nodefiledir, 44
nodefilelim, 44
nodelim, 49
nodeselect, 42

O
objdifference, 47
optimality, 32
ordering, 30
ordertype, 45

P
pdswitch, 28
perturbation, 31
perturblimit, 31
pgradient, 26
plconpri, 45
plobjpri, 45
predual, 24
prereduce, 24
prerelax, 40
presolve, 25
presolvenode, 41
prestats, 25
pricing, 28
primal, 22

primalopt, 22
probe, 41

R
readbasis, 32
readvector, 33
refactor, 28
relax, 23
relobjdiff, 47

S
scale, 25
sensitivity, 34
simthreads, 29
singular, 33
solutionlim, 49
sos2, 41
startalgorithm, 45
starttree, 48
strongcand, 45
strongit, 45
strongthreads, 45

T
timelimit, 33, 49
timing, 34, 50
treememlim, 49

U
uppercutoff, 47
upperobj, 32

V
varselect, 46
version, 35

W
writebasis, 33
writevector, 33

X
xxxstart, 29

