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Abstract

Motivated by improving statistical shape analysis, this pa-
per presents a novel landmark-based method for accurate
shape correspondence, where the general goal is to align
multiple shape instances by corresponding a set of given
landmark points along those shapes. Different from pre-
vious methods, we consider both global shape deforma-
tion and local geometric features in defining the shape-
correspondence cost function to achieve a consistency be-
tween the landmark correspondence and the underlying
shape correspondence. According to this cost function, we
develop a novel landmark-sliding algorithm to achieve opti-
mal landmark-based shape correspondence with preserved
shape topology. The proposed method can be applied to
correspond various 2D shapes in the forms of single closed
curves, single open curves, self-crossing curves, and multi-
ple curves. We also discuss the practical issue of landmark
initialization. The proposed method has been tested on var-
ious biological shapes arising from medical image analysis
and validated in constructing statistical shape models.

1. Introduction
Geometric shape information plays a key role in many com-
puter vision and image processing applications, especially
in medical image analysis where many anatomic structures
and related functions can be identified and classified in
terms of their unique shapes. In many applications, we need
to analyze the shape of the same structure or object across a
group of individuals to construct a deformable or dynamic
shape model. This leads to the development of many useful
methods on statistical shape analysis [2, 5, 14, 9, 11]. How-
ever, most, if not all, of those methods require the shape
instances to be first accurately aligned in the form of some
sparsely-sampled landmarks, or landmark-based shape cor-
respondence.

At the foundation of shape correspondence is a definition
of the shape difference that measures the nonrigid deforma-
tion or variation from one shape to another. Shape differ-
ence is usually conveniently defined in terms of landmark-
based shape representation. In this case, shape correspon-
dence can be defined as identifying a set of landmarks along
shapes such that: (a) those landmarks well represent the

original shapes, and (b) the total shape difference (based
on landmarks) across those shapes is minimized. As in sta-
tistical shape analysis, landmarks as discussed in this paper
refer to a set of sampling points along the shape contours
and may not coincide with anatomically critical points.

A large group of landmark-based shape correspondence
methods [7, 4, 1, 12] can be categorized as “shape match-
ing”, where all the landmark points are pre-sampled and
fixed during the correspondence. Various shape matching
algorithms only find matched landmarks from one shape to
another. In general, landmark-based shape matching meth-
ods can be divided into two groups in terms of the fea-
tures used in defining shape difference. The first group
of methods [7, 12] locates the matching landmarks using
local geometric features like curve curvature, arc-length,
curve smoothness, and local convexity. To preserve the
shape topology, dynamic programming techniques are usu-
ally adopted to achieve an optimal correspondence. Local-
feature shape matching is not effective to capture the non-
rigid global shape variation that is common in biological
and medical shape analysis. The second group of meth-
ods [4, 1] propose some global shape-difference measures
to match landmarks. Without locality in the cost function,
global shape matching usually results in some nonlinear op-
timization problem, which is prone to be trapped in some
local optima. Both local and global shape matching meth-
ods suffer from the problem of correspondence accuracy
because the landmarks are pre-sampled and fixed. As a re-
sult, shape matching methods are mainly used in applica-
tions like shape recognition or shape-based retrieval, where
quantitatively accurate shape description is not required.

Accurate landmark-based shape correspondence [13, 3,
10, 8, 15, 6] attracts extensive attention following the
progress and popularity of statistical shape analysis [5, 2, 9].
Many researchers [6, 3] pointed out that the accuracy of
shape correspondence greatly affects the accuracy and re-
liability of statistical shape modelling. Small error in
shape correspondence may enormously degrade the re-
sulting shape model. A series of landmark-based shape-
correspondence methods [10, 8, 6] have been developed as
an important component in point distribution models [5],
where the variance of all the landmarks is directly used to
measure the shape-correspondence error. Those methods



construct a very complicated cost function that can only be
locally optimized using random searching algorithms, such
as genetic algorithms and simulated annealing methods.

Most closely related to our research is the spline-
relaxation method proposed by Bookstein [3], where initial
landmarks are allowed to slide along the estimated tangent
directions to reduce the shape-difference measure. Similar
to our approach, this spline-relaxation method also adopts
the thin-plate spline for modelling the shape difference.
However, this relaxation method moves landmarks away
from the underlying shape contour and, therefore, the result-
ing landmarks may not represent the original shape contours
very well. Another method closely related to our approach
is the curve-mapping method developed by Powell [13],
where thin-plate splines are also used for measuring shape
difference and a nonlinear optimization software package is
used to find a local optimal correspondence. But this curve-
mapping method does not consider whether the resulting
landmarks are well distributed along the shape contours to
represent the original shapes.

In this paper, we develop a new landmark-sliding method
for shape correspondence. One main contribution of this
paper is the definition of a new shape-correspondence cost
function that combines the global features and local features
underlying the landmark-based shapes. While the global
features catch nonrigid deformation between shapes, the lo-
cal features constrain the distribution of the sampled land-
marks along the shape contours to keep the consistency be-
tween landmark correspondence and the desired shape cor-
respondence. Based on this cost function, we develop an
iterative algorithm, which slides the landmarks along the
shape contours to achieve the landmark correspondence.
With an additional projection step, this method avoids mov-
ing landmarks away from the underlying shape contour.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the proposed shape-correspondence
cost function and landmark-sliding method for two single
closed-curve shapes. Section 3 generalizes the proposed
method to more complex shapes, presents representative re-
sults in medical image analysis, and discusses some related
issues in practical applications. A brief conclusion is given
in Section 4.

2. The Proposed Method
2.1. Problem formulation
In this section we develop and describe a method to corre-
spond a target shape onto a template shape, both of which,
for simplicity, are made of a closed curve with known para-
metric representation. Furthermore, landmarks in the tem-
plate shape are given and our task is to identify a set of
corresponding landmarks in the target shape from a set of
initial landmarks. Later in Section 3, we will further dis-
cuss the extension of the proposed method to more gen-
eral cases like open-curve shapes, self-crossing shapes,

multiple-curve shapes, and multiple-shape correspondence.
Various shape examples are illustrated in Fig. 1.

(d)(c)(b)(a)

Figure 1: Illustrations of different shapes: (a) single closed-
curve shape, (b) single open-curve shape, (c) self-crossing
shape, and (d) multiple-curve shape.

Denote a parametric representation of the template shape
u(t) = (x̂(t), ŷ(t))T , 0 ≤ t ≤ L̂ and the target shape
v(s) = (x(s), y(s))T , 0 ≤ s ≤ L, where L̂ and L are the
total curve lengths of the template and the target shapes, re-
spectively. With the assumption of closed shapes, we have
u(0) = u(L̂) and v(0) = v(L). In this parametrization,
t|L̂ represents the traversed curve length from u(0) to u(t)
and s|L represents the traversed curve length from v(0) to
v(s), where a|b is the modulus operation.

Let t = {t0, t1, ..., tn−1} be a set of parame-
ters which generates n sequentially-sampled landmarks
U = {u(t0),u(t1), ...,u(tn−1)}. We assume that those
landmarks represent the template shape well. Shape-
correspondence is to seek in the target shape n parame-
ters s = {s0, s1, ..., sn−1} such that the landmarks V =
{v(s0),v(s1), ...,v(sn−1)} match the landmarks U in the
template shape. According to the statistical shape the-
ory [9], U and V can be regarded as the landmark rep-
resentation of the template and the target shapes, respec-
tively. Obviously, an important requirement is that the iden-
tified V also represents well the underlying target shape
v(s), 0 ≤ s ≤ L.

In this paper, shape correspondence is formulated as
seeking the optimal parameters s to minimize the cost func-
tion

φ(s) = d(U,V) + λR(s)

subject to some additional constraints to preserve the shape
topology, i.e., landmarks v(s0),v(s1), ...,v(sn−1) should
be sequentially located along the target shape contour as U
along the template shape. In this formulation, d(U,V) is
called the (landmark-based) shape difference which mea-
sures the global shape deformation between the template
and target shapes. R(s) is the representation error in using
n landmarks V to represent the underlying target shape. We
desire small representation error R(s) such that landmark-
based shape difference d(U,V) reflects the underlying
shape correspondence error.

This formulation brings us several key issues which need
to be addressed: (a) definition of the landmark-based shape



difference d(U,V), (b) selection of landmark represen-
tation error R(s), (c) introduction of an additional con-
straint to preserve the shape topology, and (d) development
of effective algorithms to find the optima of the shape-
correspondence cost function.

2.2. Shape difference measure d(U,V)

For brevity, let’s denote u(ti) as ui = (x̂i, ŷi)T and v(si)
as vi = (xi, yi)T , i = 0, 1, . . . , n−1. The shape difference
between U and V is measured by deforming V to U using
a 2-D thin-plate spline model [2]. This deformation is char-
acterized by h = (f, g)T : R

2 → R
2 such that V = h(U),

i.e., vi = h(ui), i = 0, 1, . . . , n − 1, where{
f(u) = a0 + a1x̂ + a2ŷ +

∑n−1
i=0 ciK(u,ui)

g(u) = b0 + b1x̂ + b2ŷ +
∑n−1

i=0 diK(u,ui).
(1)

The parameters a = (a0, a1, a2)T , b = (b0, b1, b2)T ,
c = (c0, c1, . . . , cn−1)T , and d = (d0, d1, . . . , dn−1)T in
Eq. (1) can be calculated by solving the following matrix
equation:(

K P
PT 0

) (
c d
a b

)
=

(
x y
0 0

)
, (2)

where kij = K(ui,uj) = ‖ui − uj‖2 log ‖ui − uj‖,
i, j = 0, 1, . . . , n − 1, and P = (1, x̂, ŷ). Note that
x = (x0, x1, . . . , xn−1)T , y = (y0, y1, . . . , yn−1)T , x̂ =
(x̂0, x̂1, . . . , x̂n−1)T , and ŷ = (ŷ0, ŷ1, . . . , ŷn−1)T , where
ui = (x̂i, ŷi) and vi = (xi, yi), i = 0, 1, . . . , n− 1 are cor-
responding landmarks between U and V . It can be shown
that the above transform minimizes the following so-called
bending energy function [2]

φ(h) =
∫∫ ∞

−∞
(L(f) + L(g))dxdy, (3)

where L(·) = ( ∂2

∂x2 )2 + 2( ∂2

∂x∂y )2 + ( ∂2

∂y2 )2.
Substituting (1) and (2) into (3) yields

φ(h) = cT Kc + dT Kd =
1
8π

(xT Lx + yT Ly),

where L is the n × n upper left submatrix of(
K P
PT 0

)−1

. (4)

Here L is positive semidefinite because the thin-plate
bending energy is invariant to affine transforms. This makes
the thin-plate splines especially suitable for describing non-
rigid shape deformations in biological and medical applica-
tions. We can directly use the bending energy as d(U,V),
i.e.,

d(U,V) =
1
8π

{
xT Lx + yT Ly

}
.

2.3. Shape representation error R(s)

Let li, i = 0, 1, . . . n− 1 be the traversed curve length from
vi to vi+1|n. It is easy to see that

li = (si+1|n − si)|L.

Similarly, we have the corresponding curve length between
neighboring landmarks in the template shape

l̂i = (ti+1|n − ti)|L̂.

Obviously, we have

0 < li < L, 0 < l̂i < L̂, i = 0, 1, . . . , n − 1.

With the assumption that u0,u1, . . . ,un−1 are consecu-
tively sampled landmarks along the closed template shape
contour, we know that

n−1∑
i=0

l̂i = L̂. (5)

In order to improve the representation accuracy, this pa-
per desires a similar spatial landmark distribution along the
template and target shapes. Specifically, we expect

li
li+1|n

≈ l̂i

l̂i+1|n
, i = 0, 1, . . . , n − 1. (6)

Following this principle, this paper defines the landmark
representation error in the target shape as

R(s) =
n−1∑
i=0

(li l̂i+1|n − li+1|n l̂i)2.

Unlike the shape difference measure d(U,V), this repre-
sentation error only involves with local geometric features.

2.4. Topology-preserving constraint
As mentioned before, we require that v0,v1, . . . ,vn−1 are
also consecutively distributed in the target shape as those
in the template shape. Otherwise, the shape topology of
the template and target would be different from each other.
Similar to (5), we impose the following constraint to the
shape correspondence cost function.

n−1∑
i=0

li = L.

This means every point along the target shape contour is tra-
versed only once when we start from v0, sequentially pass
through all landmarks in V, and finally get back to v0.



Combining the above selections of shape-difference
measure, shape-representation error, and the additional con-
straints, the landmark-based shape-correspondence prob-
lem can be described as

min
s

{
(xT Lx + yT Ly)

+λ

n−1∑
i=0

(li l̂i+1|n − li+1|n l̂i)2
}

(7)

subject to

0 < si < L̂

li = (si+1|n − si)|L, i = 0, 1, . . . , n − 1
n−1∑
i=0

li = L,

where λ > 0 is a regularization factor which balances the
contribution from the shape difference and the shape rep-
resentation. The following section is focused on develop-
ing algorithms to solve this optimization problem. Note
that both the current problem formulation and the following
algorithm are for the cases of single closed-curve shapes.
Generalization to more general cases will be discussed in
Section 3.

2.5. Landmark sliding algorithm
The landmark-based shape-correspondence problem formu-
lated above is a constrained nonlinear optimization prob-
lem because the parametric representation of the shape is
usually strongly nonlinear. Random searching algorithms,
like genetic algorithms or simulated annealing approaches,
are usually required to achieve globally optimal solution.
However, most random-searching algorithms are slow and
unreliable because of its sensitivity to some heuristically-
selected parameters. In this paper, we present a landmark-
sliding algorithm, which iteratively updates the currently
estimated landmarks V to achieve a local optima. Together
with the initialization method to be introduced in Section
3.1, this landmark-sliding method is able to produce very
accurate and reliable shape correspondence. Experiments
in Section 3 also provide some evidence that this landmark-
sliding algorithm is in fact not very sensitive to the initial
estimate of V (or s).

The basic principle of the landmark sliding algorithm
is to freely slide an initially-estimated V along the tar-
get shape v(s), 0 ≤ s ≤ L to minimize the cost func-
tion (7). We tackle the nonlinearity of the optimization
problem by alternately repeating two steps: (a) sliding
all estimated landmarks along the tangent directions, and
(b) projecting the updated landmarks back to the target
shape. Let s = {s0, s1, . . . , sn−1} be the parameters for
the currently estimated landmarks V = {v0,v1, ...,vn−1}.
Our task is to seek an improved estimate of parameters

s′ = {s′0, s′1, . . . , s′n−1} or equally, estimate of landmarks
V′ = {v′

0,v
′
1, ...,v

′
n−1}.

v(s )i

p(s )i
α i

i(s )κ
1

∆ r

v(s’ ) i

v(s    )i−1

v(s    )i+1

v(s )i

p(s )i
α i

v(s    )i−1

v(s    )i+1

v(s’ ) i

(b)(a)

Figure 2: Illustrations of the landmark sliding and projec-
tion: (a) landmark sliding along tangent direction, followed
by a projection back to the shape contour, and (b) selecting
sliding step length based on the shape curvatures.

The normalized tangent direction at a landmark v(s) can
be calculated by

p(s) =
[

px(s)
py(s)

]
=


 ẋ(s)√

ẋ2(s)+ẏ2(s)
ẏ(s)√

ẋ2(s)+ẏ2(s)


 .

Let αi be the sliding distance of vi along tangent direction.
Thus, i-th landmark after a step of sliding is at vi+αip(si).
After a step of sliding, those landmarks are usually not lo-
cated along the original target shape any more. We address
this problem by projecting them back to the target shape
contour as

v′
i = v(si + αi),

as illustrated in Fig. 2(a).
Considering this, shape correspondence through land-

mark sliding is to find an optimal α = (α0, α1, . . . , αn−1)T

minimizing the cost function

(x + Pxα)T L(x + Pxα) + (y + Pyα)T L(y + Pyα)

+λ
n−1∑
i=0

{
(li + αi)l̂i+1|n − (li+1|n + αi+1|n)l̂i)2

}
, (8)

where matrices Px = diag(px(s0), px(s1), . . . , px(sn−1))
and Py = diag(py(s0), py(s1), . . . , py(sn−1)). We can
calculate the updated parameters s′ by

s′i = (si + αi)|L,

and the updated curve-segment length li by

l′i = (s′i+1 − s′i)|L = (li − αi + αi+1)|L.

Finally, let’s consider the topology-preservation con-
straint and other necessary additional constraints. Obvi-
ously, to preserve the shape topology, we only require

li − αi + αi+1 > 0, i = 0, 1, . . . , n − 1, (9)

i.e., no landmark can move beyond its neighbors during the
sliding/projection.



Another problem is to constrain the error caused
by the projection step, which may increase the shape-
correspondence cost. Considering the fact that the shape-
correspondence cost function is continuous with respect to
the motion of landmarks, we control the possible landmark-
coordinate offsets from the projection step. As illustrated
in Fig. 2(b), this can be controlled by limiting the allowed
step-length αi, i = 0, 1, . . . , n − 1. It can be seen that, the
larger the curvature at a landmark, the smaller the allowed
step-length.

The curvature (without sign) at a landmark v(s) can be
computed by

κ(s) =
|ẋ(s)ÿ(s) − ẍ(s)ẏ(s)|

|ẋ(s)2 + ẏ(s)2| 32
.

As illustrated in Fig. 2(b), the osculating circle at a land-
mark should be of the radius 1

κ . With an assumption of
small step length, we take the approximation that a land-
mark after tangential sliding and the one after further pro-
jection are located along the same radius of the osculating
circle. In this paper, we set the projection error to be less
than ∆r, it is easy to show that the step-length should sat-
isfy the constraints

αi ≤
√

2∆r

κ(si)
+ (∆r)2, i = 0, 1, . . . , n − 1. (10)

Throughout this paper, we choose ∆r = 0.5 given that
shapes are directly extracted from real images and the coor-
dinates of landmarks are the corresponding row and column
numbers in the original images.

It can be seen that minimizing the cost function (8) sub-
ject to constraints (9) and (10) is a simple quadratic pro-
gramming problem, whose global optima can be efficiently
calculated. For shape correspondence, we give an initial es-
timation of s or V and then repeatedly perform landmark
sliding and projections until convergence. While no strict
proof is provided to exclude possibilities of oscillation so-
lutions, we do not see such a solution in all our experiments,
with ∆r = 0.5. In the next section, we will discuss the se-
lection of a good initial estimation of V and illustrate its
performance by various examples.

3. Experiment and Discussions
In this section, we will first describe how to use the above
algorithm for shape correspondence. Then we will present
some experimental results. Finally, we will discuss some
issues related to practical applications.

3.1. Shape acquisition, landmark initializa-
tion, and landmark sliding

In order to use the proposed landmark-sliding algorithm for
shape correspondence, we need parametric representations

(a)

(c)

(e) (f)

(d)

(b)

Figure 3: Illustrations of shape acquisition, landmark ini-
tialization and landmark sliding: (a) template shape con-
structed from a set of labelled landmarks, (b) target shape
constructed from different number of labelled landmarks,
(c) initial estimate V with λ = +∞, (d) another initial es-
timate V with more bias to the desired locations, (e) corre-
sponded landmarks. (f) the underlying deformation field for
(e) (bending energy 0.2167). The curves in (f) are the target
shape and deformed template shape calculated by Eq. (1),
respectively.

of both the template and target shapes and an initial estimate
of the target landmarks V. In this section, we discuss these
issues in a systematic way which aims for statistical shape
analysis.

To build a statistical shape model of an object, each
(training) shape sample is usually obtained, either manu-
ally or automatically, by labelling a set of landmarks in an
image. In this paper, we adopt the Catmull-Rom splines
to interpolate those labelled landmarks and construct the
parametric representations of the shapes. The Catmull-Rom
spline is used because of its smoothness and interpolation
property, as illustrated in Figs. 3(a) and (b). We can use
the labelled landmarks in the template shape as the tem-
plate landmarks U for shape correspondence. However,
it is usually not feasible to use the labelled landmarks in
the target shape as an initial estimate of V. The reasons
are two-fold: (a) the labelled landmarks in the target may
be of different number from those in the template; (b) the
landmark labelling may start from any location along the
target shape and therefore, the labelled landmarks in the
target shape may not be a good initialization. An exam-
ple is shown in Fig. 3(b), which contains different number
of landmarks as those in (a). Also the relative location of
the first landmark (shown in square) in the target shape is
largely different from that in the template shape. Because



the proposed landmark-sliding algorithm is a local search
algorithm, big bias in the initial estimate may result in con-
vergence to local optimum far from the desired correspon-
dence.

(c)

(a) (b)

(d)

(f)(e)

(g) (h)

Figure 4: Callosum shape correspondence by landmark
sliding: (a) template shape and landmarks, (b) target shape
and landmarks, (c) resulting landmarks using the proposed
method with λ = 10−3. (e) results using the proposed
method with λ = 0. (g) results using Bookstein’s method.
(d), (f), and (h) are deformation fields corresponding to
(c), (e), and (g), with bending energy 0.2971, 0.2442 and
0.2394, respectively. Target shapes are also shown in (c)-
(h) for elucidation.

There are many ways to achieve an initial rough corre-
spondence, like those successfully used for shape recogni-
tion and retrieval, as reviewed in the section 1. In this sec-
tion, we use a simple but effective algorithm to seek a good
initial estimate of V based on the cost function (7). The
basic principle is to set λ = +∞ such that a strict equal-
ity instead of an approximate equality is held in (6). With
this strict equality constraint, we can thoroughly try every
possible point along the target shape as v0, which in fact
uniquely defines a set of landmarks V, because the curve
length between each pair of landmarks in the target shape
is fixed. Then we choose the one with smallest shape dif-
ference d(U,V) as the initial estimate of V for landmark
sliding. In practice, we only need to check a finite set of
possible v0 sampled along the target shape. This initial cor-
respondence does not introduce any free parameters and any
local optima. Meanwhile, it has a close relationship with the

refined shape-correspondence method developed in Section
2. An example is illustrated in Fig. 3(c).

Figures 3(e) and (f) show the final corresponded land-
marks in the target shape using the landmark-sliding algo-
rithm and initial estimate shown in (c). Without special in-
dication, we set λ = 10−3 in all our experiments. It can be
seen that the landmark in the target and template are well
corresponded (in terms of the thin-plate deformation) and
the achieved landmarks also represent the target shape very
accurately. In fact, the landmark sliding algorithm has a
certain level of robustness to the initialization error. Fig-
ure 3(d) gives another initial landmark estimate where v0 is
farther from the desired location and initial landmark dis-
tribution along the shape is quite different from the desired
one. As expected, this initial estimate also converges to the
same shape correspondence results as shown in Figs. 3(e)
and (f), using the proposed landmark sliding algorithm.

Figure 4 demonstrates the comparison results of shape
correspondence using various methods. Figures 4(c) and (e)
show the shape correspondences using the proposed method
with λ = 10−3 and λ = 0, respectively. We can see
that, without considering the representation error R(s), e.g.,
λ = 0, the obtained V has smaller shape difference with
the template U, but they do not represent the target shape
very well, as witnessed by the curve segment to the right
of the first landmark (with square). Figure 4(g) shows the
correspondence result using Bookstein’s method [3], where
landmarks may be moved away from the underlying shape,
as witnessed by the first landmark.

3.2. Corresponding shapes with open-curve or
multiple curves

Although shapes consisting of a single closed curve are very
common in practice, open-curve shapes and multiple-curve
shapes are also very important in statistical shape mod-
elling. An open-curve shape may appear when part of the
object is occluded or outside of the view. A multiple-curve
shape is very important when we are simultaneously inter-
ested in several structures in an object. While some previ-
ous methods [6] may have difficulties in dealing with those
general cases, the proposed methods can be easily extended
to address those general cases.

For shapes with open curves and multiple curves, the
shape-difference term will stay unchanged in the cost func-
tion, because the thin-plate bending energy is not related
to the connection order of landmarks for certain shapes.
The differences lie in the representation term R(s) and the
additional constraints. From closed-curve shape to open-
curve shape, we make the following changes: (a) the first
landmark v0 and the last landmark vn−1 should be fixed
in the landmark sliding. This brings us additional linear
constraints α0 = 0 and αn−1 = 0. (b) In defining R(s)
and topology-preservation constraint, we remove the term
corresponding to the curve segment between v0 and vn−1.
Fig. 5 shows an example of using landmark-sliding algo-



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Stria-shape correspondence. (a)-(g) are the same
as those in Fig. 4 except that the bending energy for (c), (e),
and (g) are 0.2128, 0.1463 and 0.2571, respectively.

rithm for open-curve shape correspondence. Similarly, we
see that the resulted landmarks from Bookstein’s method
and the proposed method without R(s) may not well rep-
resent the target shape, as witnessed by the top-right peak
landmark in Fig. 5(e) and (g).

For multiple-curve shapes, we only need to consider
the shape representation error R(s) and the additional con-
straints for each open/closed curve separately and then com-
bine them together into the cost function (7). In Fig. 6, we
show an example of corresponding two shapes with mul-
tiple structures in the human brain. We can see that the
proposed method deals with all the structures in a global
way and is able to delineate the boundaries in terms of their
intra- and inter-shape information.

Shape with self-crossing (see Fig. 1(c)) appears where
two objects share a part of the boundary. In this case, what
we need to do is to find and fix those crossing points in
the sliding, i.e., setting the corresponding α = 0. All the
other processing is the same as in the case of multiple-curve
shape.

3.3. Multiple shape correspondence and statis-
tical shape modelling

So far, we discussed algorithms for identifying landmarks
in a target shape to match the known landmarks in a tem-
plate shape. In a typical problem, however, it is required to
identify n corresponding landmarks in a set of shape sam-

(a)

(c)

(b)

(d)

Figure 6: Shape correspondence of multiple structures in
the brain: (a) template shape and landmarks, (b) target
shape and initial landmarks, (c) corresponded landmarks,
(d) the deformation field for (c), with bending energy
1.2238.

ples. As discussed in [3], this can be accomplished by iter-
atively repeating the template-target shape correspondence
algorithm. Basically, we first choose one shape sample as
the template. Then we use the above landmark-sliding al-
gorithm to correspond the landmarks in all the other shape
samples. Based on this, we can compute a prototype shape
by averaging all the shape samples with currently corre-
sponded landmarks. All the shape samples are then re-
corresponded to this prototype shape and repeat the alter-
nating shape averaging and correspondence algorithms until
convergence.

As in [6], we use the statistical shape modelling to
evaluate the performance of our algorithm. We extract
12 manually-corresponded callosum shapes from 12 MRI
brain slices (see supplementary material). Each shape
consists of 24 landmarks, which are arranged in a 48-
dimensional vector containing x- and y-coordinates of each
landmark. Then we calculate the mean shape and covari-
ance matrix for the given 12 shape vectors. The square
roots of the eigenvalues of the covariance matrix repre-
sent the standard deviations (σ) along the principal direc-
tions. In this experiment, the three largest deviations are
[22.3031, 11.7680, 5.1857] before applying our multi-shape
correspondence method and [16.3055, 8.9899, 4.3024] after
applying 10 iterations of multiple-shape correspondence. It
can be seen that the standard deviations in all three prin-



cipal directions are decreased after shape correspondence.
This shows that the shapes after correspondence generate a
more compact statistical shape model.

Furthermore, we deform the mean (prototype) shapes,
before and after 10 runs of multi-shape correspondence,
by 3σ or −3σ along each of these three principal direc-
tions. Figure 7 illustrates the deformed shapes with or with-
out 10-runs of multi-shape correspondence. It can be seen
that, through the shape correspondence, the statistical shape
modelling is able to generate more reasonable shape sam-
ples. This is particularly evident in comparing the top-two
images in the left-most column.

Figure 7: Multi-shape correspondence for statistical shape
modelling. The first row is the deformed shapes before ap-
plying landmark-sliding algorithm. From left to right are
the results by varying the first, second and third principal
components by −3σ, respectively. The second row is the
deformed shapes after landmark-sliding-based shape corre-
spondence. The third row and fourth row show the similar
comparisons except that shapes are varied by +3σ in first
three principal components.

4. Conclusion
This paper presented a novel landmark-based method for
accurate shape correspondence. This method aligns mul-
tiple shape instances by identifying a set of corresponded
landmark points along those shapes. The corresponded
shapes can be used to generate more compact and accu-
rate statistical shape models. Different from previous meth-
ods, we considered both global shape deformation and lo-
cal geometric features in defining the shape-correspondence
cost function to achieve a consistency between the landmark
correspondence and the underlying shape correspondence.
According to this cost function, we developed a novel
landmark-sliding algorithm to achieve optimal shape cor-
respondence. The proposed method is able to correspond a
variety of 2D shapes, like closed-curve shapes, open-curve
shapes, self-crossing shapes, and multiple-curve shapes.
We also discuss the practical issue of landmark initializa-

tion. The proposed method has been tested on various bio-
logical shapes in medical images and validated in construct-
ing statistical shape models.
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