
 
(a) SEQ1                                                         (b) SEQ2                                               (c) SYN 

Figure 4: Sample matching results. (a), (b) and (c) are from SEQ1, SEQ2 and SYN dataset respectively. Top two rows are correct 
matching video pairs. The bottom three rows show failure cases. The third row is the probe input video. The fourth row is the returned 
matching video, which is incorrect, and the last row is the true matching video for the probe in the third row. 

invisible joints, the 3D locations of visible joints are also 
wrong. In the last row, we give the estimated 3D pose with 
our adaptation. From Fig. 3, we can find our algorithm can 
return reasonable pose for visible human body parts at any 
time, which we use for pose-based CVPI.  

Sample matching results are shown in Fig. 4. The three 
columns are samples from SEQ1, SEQ2 and SYN respec-
tively. The top two rows are correct matching video pairs. 
Incorrect matching video pairs are shown in the bottom 
three rows, where the third row are probe inputs, the fourth 
row gives the returned false sequence and the true match-
ing sequence is shown in the fifth row. The 3D human 
movements in the matched video pairs are completely con-
sistent. In the correctly matched videos from SEQ1 and 
SEQ2, some body parts are missing. Nevertheless, our al-
gorithm still returns the correct matching results. This 
shows that using some of body parts is sufficient for CVPI. 
For failure cases, the main reasons include the missing of 
too many key body parts and the overly large difference of 
the camera views. For example, the failed matching in 
SEQ1 in Fig. 4 may be caused by the totally opposite view 
angles of the truth matched video pairs, as indicated in 
rows 3 and 5 in Fig. 4(c). As a result, the visible parts in 
the probe are invisible in the true matching video, which 
leads to a false matching. Similarly, due to the camera-
view difference, many key body parts are occluded in the 
probe video of SEQ2, which results in a false matching. 
The false matching video in SYN has very similar move-
ment as the probe video.  

Conclusion 
In this paper, we developed a new metric of confidence to 
3D human pose estimation (HPE), which measures the 
localization confidence of each joint, and used the estimat-
ed poses for cross-view person identification (CVPI), i.e., 
identifying the same person from temporally synchronized 
videos. Based on an existing 3D human pose estimation 
method, the confidence metric is defined in three aspects: 
2D HPE confidence, 3D HPE confidence and temporal 
confidence. Then, we combined the inaccurately estimated 
human pose with the confidence metric for CVPI, by using 
confidence as weight in matching poses estimated from 
two videos. We found that the derived confidence can 
promote the pose-based CVPI. Finally, we integrated the 
estimated pose information into motion and appearance 
features and found that pose information well complements 
the motion and appearance features in CVPI and the inte-
gration of the pose, motion, and appearance features leads 
to new state-of-the-art CVPI performance. 

There are two directions for the future work. First, com-
pared to the current hand-crafted fusion of different confi-
dences, supervised learning may be applied to produce a 
better fusion with further improved CVPI performance. 
Second, we can use CNN to learn the confidence metric, 
which can be combined with pose estimation through con-
fidence weighted loss. 
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