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Abstract. The first step required for many applications and algorithms
is the segmentation or clustering of an image. This intuitively easy prob-
lem is actually very difficult for a computer to automatically perform.
While having an effective solution to this problem would be valuable
for all types of image processing, it would be especially useful in med-
ical imaging. One method that addresses this problem is the K-means
clustering algorithm. This paper presents a simple case of applying this
algorithm to images, and extends it by redefining the distance measure
to consider texture information. Results are shown for both algorithms,
with the improvements from the modified algorithm clearly visible.

1 Introduction

A common problem that must be addressed for many applications and algo-
rithms is that of image segmentation. Image segmentation attempts to divide
an image into distinct regions either completely automatically or with manual
assistance. There are several classes of segmentation algorithms including clus-
tering, histogram based, region growing, graph partitioning, and model based.
This paper focuses on a standard clustering algorithm that is fully automatic,
and extends it to provide better results.

While image segmentation is a general problem which can be applied to
many different types of images, it can be especially valuable in medical imaging.
It can be used to differentiate between different tissues or structures, measure
the size or volume of structures, locate tumors or other irregularities, etc. These
identifications can be useful during diagnosis and treatment planning, as well
as computer guided surgery. Additionally segmentation can be used to aid with
image registration, which is itself a large research problem.

1.1 Clustering

Clustering is the process of ”attempting to determine which components of a
data set naturally belong together.” [1] In the case of image clustering, each
pixel or voxel represents a single data component. The objective is to group
each pixel with other pixels that are ‘close’ using some definitive measure of
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(a) Original Image (b) Simple Clustering

Fig. 1: These two images demonstrate a simple clustering of a brain MRI image into
three different regions. Each region is denoted by a particular grayscale value, which
is the average grayscale value of all the pixels in that cluster. Notice that the regions
are not necessarily continuous, as they are divided into many disjoint areas.

distance. The definition of ‘close’ and the method used to determine the best
grouping can vary depending on the particular algorithm being used.

Some segmentation algorithms produce distinctly continuous regions, such as
the watershed algorithm. However, clustering may produce disjoint regions that
are scattered throughout the image if locality is not taken into consideration (see
Fig. 1). In certain cases this may actually make sense. For example, a medical
image that contains the cross section of several bones (such as a hand or foot)
may have several disjoint areas that all represent bone. If the objective is to
identify different tissues or structures (such as muscle or bone) the clustering of
all disjoint areas corresponding to each particular material into a single region
may be desired.

1.2 K-Means Algorithm

One common clustering algorithm is K-Means. [2] This algorithm applied to an
image takes a number of clusters k, and attempts to group the pixels into the
given number of clusters. Figure 1 above shows a simple example of K-Means
with k equal to 3. The algorithm begins with some k initial centers, which can be
provided manually or generated randomly or based on some heuristic. Each pixel
is assigned to the ‘closest’ center, based on some measure defining distance. Each
center is then recalculated to be the average of every pixel assigned to its cluster.
The algorithm then iteratively repeats until convergence, which is guaranteed.
Upon convergence, the variance among the clusters has been minimized. The
final state may vary based on the initial centers however, so a global optimal
solution is not guaranteed. The steps of the algorithm are summarized below.
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1. Define the number of clusters k

2. Generate k centers randomly or heuristically, or have them provided
3. Assign each pixel to the closest cluster center
4. Calculate new centers based on current cluster contents
5. Repeat steps 3 and 4 until the clusters no longer change

(a) Initial State with Four Centers (b) Initial Assignment and Recalculated
Centers

(c) Assignment to Recalculated Centers (d) Final Centers and Assignment

Fig. 2: These four figures show two iterations of the K-Means clustering algorithm. Fig.
2a shows the initial state, with each data component shown as a small dot and each
initial center shown as a large dot. Fig. 2b shows the assignment of each data compo-
nent to the closest center, with each center having been recalculated. Closeness in this
example is simply the geometric distance between each point and a center. The boxes
indicate variance within each cluster. Fig. 2c shows the assignment to the newly calcu-
lated centers. Fig. 2d shows the final centers and assignment, with minimal variance.
Images adapted from those found on the Wikipedia page describing K-means. [3]
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2 Methodology

The description of the K-Means algorithm given above is generally incomplete.
Two items have been left undefined: the distance measure and the meaning of
average. One simple metric is the geometric distance as demonstrated in Figure
2 and given in Equation 1, where x and y are the coordinates of a data point,
and xci and yci are the coordinates of center i, 1 ≤ i ≤ k. The average in this
case can easily be defined as the average of the x and y coordinates of all data
points in each cluster.

√
(x− xci)2 + (y − yci)2 (1)

This metric has no usefullness in segmenting an image when used alone,
however. This can clearly be seen since it does not take into consideration the
actual image information, or pixel intensities. Therefore given any two different
images and starting the algorithm with the same centers on both images, the
same results will be obtained. This metric could be used as a weight added
to another distance function however, attempting to create clusters which are
localized.

2.1 Intensity Difference

A different measure that could be used to define distance for image segmentation
is the difference between a pixel’s intensity and the intensity of a center. This is
defined in Equation 2, where F (x, y) is the intensity of the pixel with coordinates
x and y, and Ci is value of center i, 1 ≤ i ≤ k. In this case the average would be
defined as the average intensity of all the pixels in each cluster. Therefore each
center does not correspond to an actual pixel of the image, as a center may be
calculated which does not correspond to the intensity of any pixel in the image.
Since the intensity is all that is needed however, this does not create any issues.
An example of this method is displayed in Figure 3.

|F (x, y)− Ci| (2)

The result shown in Figure 3b demonstrates good segmentation of structures
that are homogeneous (such as the center structure), but performs poorly on
structures with varying intensity (such as the two structures to the left and
right sides of the image). In this case different parts of particular structures
were assigned to three or more clusters.

2.2 Neighborhood Averaging

One way this problem could be addressed is to consider the texture of structures,
instead of simply a single pixel intensity. Consider the three sample shown in
Figure 4, all of which have a center pixel with similar intensity, but clearly come
from different structures. Each of these three center pixels would likely end up in
the same cluster, even though their neighboring pixels indicate that they should
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(a) Original Image (b) Intensity Difference Clustering

Fig. 3: These two images demonstrate a simple clustering into five different regions
based on intensity difference. Each region is denoted by a particular grayscale value,
which is the average grayscale value of all the pixels in that region. While some of the
structures are effectively clustered, many structures are divided into multiple clusters.
This is particularly evident in the two regions on the left and right side of the image.
These two structures have varying intensity, so different parts of each structure are
assigned to different clusters.

not. A simple way to quantify the neighborhood of a pixel is to look at the
average intensity of all the included pixels. This would help in some cases, but
still proves ambiguous in seemingly obvious cases, such as that shown in Figure
5.

2.3 Local Histograms

Another measure that can be used to quantify texture comes from looking at the
histogram of a pixel’s neighbors. This method adds two new parameters to the
algorithm in addition to k. The number of surrounding pixels to be considered, or
neighborhood size must be defined. The bin size for the histogram must also be
declared, which determines what range of intensities should be grouped together.
For example, if a bin size of 16 is used, there will be a total of 16 bins (assuming
256 different grayscale values). The first bin will count how many pixels in the
neighborhood have pixel intensity of 0-15, the second bin will count the pixels
with intensity 16-31, etc. If a neighborhood size of 9x9 is used, a total of 81 pixels
will be considered. Therefore the sum of all the bins for any given histogram
would also be 81.

These histograms provide a measure that is invariant to rotation, transla-
tion, and scale assuming that the neighborhood is large enough to encompass a
representative sample of pixels. The histograms from three neighborhoods, each
with a center pixel intensity of 100 but coming from different structures, are
displayed in Figure 6. From these histograms it should be possible to distinguish
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(a) Neighborhood Selections

(b) Neighbor-
hood 1

(c) Neighbor-
hood 2

(d) Neighbor-
hood 3

Fig. 4: Three pixels were chosen from the original image shown in Fig. 4a, with an X
marking each location. These three pixels clearly come from different structures, but
their center pixels all have similar intensity.

(a) Gradient (b) Bars

Fig. 5: These two neighborhoods have obviously different texture, but have the same
average intensity. Clustering based on the average intensity would therefore put these
two neighborhoods in the same cluster.
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between different structures even if there is texture, such as the two structures
on the left and right of Figure 3a.

Fig. 6: The histogram of three different neighborhoods, each with a center pixel inten-
sity of 100 but located in different structures. Even though the center pixel intensity
cannot distinguish between these three neighborhoods, the histogram provides a ‘fin-
gerprint’ that can be used for comparison.

Once the histograms for each pixel have been established, the distance be-
tween two histograms can be defined as the root mean square distance (RMSD)
between each pair of bins. This is shown in Equation 3, where H(i) is the number
of pixels in the ith bin. The center of a cluster can then be calculated as the
binwise average of the histograms of each pixel in the cluster. This is shown in
Equation 4 where Hc(i) is the ith bin of the histogram for center c, Hj(i) is the
ith bin of the histogram for pixel j which is in cluster c, and Nc is the number
of pixels in cluster c.

√∑

i

(H1(i)−H2(i))2 (3)

Hc(i) =

∑
j∈c Hj(i)

Nc
(4)

3 Implementation

The algorithm described in this paper was implemented using GNU Octave [4],
which is a free numerical computation package similar to and mostly compat-
ible with MATLAB. This package was chosen due to its built in functions for
reading and writing images, as well as its extensive library of vector functions
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that would save much time. Additionally all memory management and other te-
dious overhead work is eliminated, allowing programs to be quickly created and
modified. The downside however is that programs run significantly slower than
other possible implementations, such as C/C++. Therefore numerical compu-
tations packages are good for prototyping and experimenting, but a production
implementation would probably be best suited to a more optimizable language.

The basic K-Means algorithm operating only with each pixel’s individual
intensity value was able to be implemented almost purely with vector opera-
tors. This created a fast running program, which could perform 25 iterations
with a k of 5 on a image with 480x480 pixels in approximately 10 seconds on a
standard PC. The histogram based K-Means algorithm requires the use of more
complicated looping functions due to its consideration of each pixel’s neighbor-
hood instead of just the individual pixel’s value. Therefore this implementation
runs significantly slower, requiring around 5 minutes for an image of the same
size with the same number of iterations. This runtime is still acceptable for the
purposes of this paper however.

4 Results

The first set of results shown in Figure 7 shows the performance of using the
intensity difference method described in Section 2.1 on images sized 480x480
pixels. The number of centers k was set to 5, and the centers were chosen ran-
domly. The only constraint on the random centers is that they had to be unique.
Interestingly, the algorithm converged to Figure 7b a large majority of the time,
indicating that this method is generally insensitive to the initial centers. Two
other convergences are also shown in Figures 7c and 7d. In each of these results,
the segmentation performance on homogeneous structures is good, but issues
are evident with textured structures. The final centers are listed in Table 1, cor-
responding to Figure 7. The first two clusterings have very similar final centers,
while the third clustering deviated somewhat to a different local optimum. These
differences in the third clustering can be seen in the left and right structures of
Figure 7d.

Table 1: Final centers after convergence using intensity distance clustering.

C1 C2 C3 C4 C5

Clustering 1 2 34 78 142 214

Clustering 2 3 40 85 144 215

Clustering 3 5 59 133 186 223

The second set of results shown in Figure 8 shows the performance of the local
histogram based method described in Section 2.3 on images sized 480x480 pixels.
The number of centers k was set to 5, with a binsize of 16 and neighborhood



K-Means Clustering 9

(a) Original Image (b) Clustering 1

(c) Clustering 2 (d) Clustering 3

Fig. 7: Three different clusterings of Fig. 7a are shown here, using the intensity differ-
ence based method defined in Sect. 2.1 with k = 5. Each image is 480x480 pixels. The
initial 5 centers were randomly generated, leading to the three different results. A large
majority of the time the algorithm converged to the result shown in Fig. 7b however.
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(a) Original Image (b) Clustering 1

(c) Clustering 2 (d) Clustering 3

(e) Clustering 4 (f) Clustering 5

Fig. 8: Five different clusterings of Fig. 7a are shown here, using localized histograms
as described in Sect. 2.3. Each image is 480x480 pixels. The number of clusters k was
set to 5, with a binsize of 16 and a neighborhood size of 9x9. The initial 5 centers were
randomly generated, leading to the five different results. Note how much these 5 results
vary, compared to the differences between each of the results in Fig. 7.
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size of 9x9. The algorithm was run for 10 iterations in each case. To generate
the initial centers, 5 random pixels were chosen in the image. The center was
then defined to be the neighborhood histogram of each of these pixels. These his-
tograms were also guaranteed to be unique. The most immediate observation is
that the clustered regions are much more continuous, with less speckling between
the clusters. Each of the results also varies much more than the results shown
in Figure 7, ranging from not much better than simple intensity differences to
accurately segmenting the textured regions. This indicates that this method is
much more sensitive to the initial centers. This can be contributed to the fact
that this method is 16 dimensional (since there are 16 bins in each histogram)
instead of single dimensional as was the case using intensity difference.

5 Conclusion

This paper discusses a general image segmentation algorithm based on the stan-
dard K-Means clustering algorithm. Although applicable to a wide range of
images, these algorithms can be particularly useful with medical images. The
method presented has several advantages, such as being fully automatic, fast
(with a production implementation), and requiring no training data. This algo-
rithm can also be applied to many different types of medical images, not just a
single set (such as heart images or brain images). These advantages largely come
from the fact that no high-level information is used, such as shape models. This
can prove disadvantageous as well, however. Some of the results currently stray
far from an ideal segmentation of individual structures that may be achieved by
other higher level algorithms.

The local histogram method described in Section 2.3 generally outperforms
the intensity based method described in Section 2.1. There are still issues with
this method, however, with the most obvious being the choice of initial centers.
Choosing random pixels to provide the initial centers creates a wide range of
results. There are heuristic methods that could be used to improve the initial
selection of centers while still remaining fully automatic. Instead of merely re-
quiring that each initial center histogram is unique, it could generate several
more localized histograms than are needed. It could then select a subset of these
which have the greatest overall distance, ensuring that numerous initial centers
are not located within the same region. Another possibility would be to start
with the intensity based clustering, and then use the final center values to select
pixels to generate the initial histograms. This would help ensure that each center
starts in a distinct region.
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