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Abstract:  The commonest way to fit multiple lines is to use methods 

incorporate the EM algorithm.  However, the EM algorithm dose not 

guarantee to give the global optimum result since it is based on 

initialization of parameters.  With an inappropriate initialization, the EM 

algorithm can generate lines that are obviously wrong according to 

human eyes.  The goal of the method described in this paper is to find a 

way of multiple-line fitting when given set of points without having to 

guess the initial parameters. The main part of this algorithm involves 

some heuristic divide and conquers methodology; it also involves 

developing a scoring function for a line.  The results show that in many 

situations, this algorithm will produce better results comparing to the 

EM algorithm.

Introduction.  The least square fitting method, also known as simple linear regression in 

statistics, may be the most widely used way to fit a straight line from the given data 

points.  However, EM algorithm is the widely used when come to multiple line fitting.  

All of the general EM algorithms require a guessing of the initial parameters.  The rest of 

the algorithm is based on the initial parameters.  If the initial parameters are poor, the 

later iterations of the EM algorithm might produce inaccurate results.  In the multiple-line 

fitting case, prior to the iteration steps, one has to guess approximately how many lines 

are there and which points belong to which line.  If some of the points are put on wrong 

lines when initializing, it’s possible that the results will not be corrected during later 

iterations. Furthermore, if the number of lines is wrong, there is no way for the EM 

algorithm to detect or correct such error.  Usually, it is not easy to guess the correct 

number of lines, thus it is unlikely to obtain correct results by applying the EM algorithm 

without optimizing the initialization. Figure 1. shows some poor results from the EM line 

fitting algorithm.

Figure 1. 
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Fig1a and Fig1b shows the result suffered from local minimum, even with correct guess 

of number of lines.

The motivation of this paper is to develop a method that does not require guessing of the 

initial values about the number of lines, and which points belong to which line.  

Method and Algorithm. In order to avoid the initialization step, one needs to find a way 

to estimate how likely that some certain points are form a certain line. Therefore a 

function to describe the likelihood of each fitted line to be a true line is wanted.  In 

simple linear regression, 
2

R (R-Square) statistic is used to measure the percentage of the 

variation in the data is explained by the estimating equation.  The following statistics can 

be calculated if given a set of data of N points represented in ( , )i iX Y  format:
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.  Figure 2 shows two plots in terms of line fitting.  

Figure 2  (figure 2-7 are generated using Minitab)
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Fig.2a shows a perfect line fitting as all points are exactly on the fitted straight line and so 

the
2

R statistic in this case is one. Fig.2b shows a line with
2

R =0.79. Most of the points 

are around the fitted line but not exactly on the line. The higher 
2

R  indicates the less 

variability and the points in general are closer to the fitted line and therefore the points 

are more likely to actually form a straight line.

Notice that if the input data only contains 2 points, since 2 points can form a line, the
2

R  

statistic will always be one.  For multiple-line fitting, we want a better way to indicate the 

likelihood of a certain set of points to actually form a line.  We introduce the line score S, 

which is used to represent how likely that a set of points forms a line.  Line Score is 

defined as: 

2
n

S R

N

= +  , 

N is the total points in the input, n is the points considered in current line.

Since this line score takes the proportion of the sample size of the set of points considered 

in the line fitting out of overall sample size (total number of points) into considered in 

addition to the R-square statistic, it gives a better indication of the likelihood of this set of 

points actually forms a line. Line score S is the sum of 2 probabilities, thus 

0 2LineScore< ≤ .  In multiple-lines fitting, higher score indicates a better-fitted line. 

Figure 3. shows some examples of line-fitting using the line score statistic as the criteria.

Figure 3.
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Assuming there are totally 75 points in the input (N=75).  The 20 points (n=20) in Fig3a 

form a perfect line and the line score is 1.20.  Fig3b is a line also formed with 20 points 

(n=20) but it has one outlier, the line score is 1.17. The points in Fig3c show a perfect 

line (n=25) and it has a line score 1.25.  Fig3d fits a line with 25 points (n=25) but some 

of them are noise, the line score is 1.15.  These plots show that the line score can evaluate 

line fitting given a set of points easily and reasonably.

To avoid the initialization step, a rather heuristic approach is used here.  Consider all of 

the input points located with X and Y coordinates on a finite two-dimensional space. 

Then we can cut the space into some small spaces in a way preserves the line shape 

properties as well as possible.  To do this, the space is cut into some stripes as a stripe is 

thought to have the best chance of capturing a line. Then we apply the algorithm to the 

stripes.  The algorithm is defined as following:

1. Divide the area into certain finite area of stripes (5 or 10 

usually is sufficient).

2. Calculate the line score for each stripe.

3. Pick the stripe with highest line score and filter out outliers.

4. Redefine the stripe area with the fitted line by putting the 

picked stripe in the reference frame with intercept 0 and slope 

1.

5. Recalculate the line score with the points inside the stripe.

6. If the new line score is higher than the current highest value, 

continue to next step, otherwise go back to step 3, and pick the 

next highest score stripe.



7. Go to step 4 and then step 5. Repeat until no more points are 

getting added into the stripe.

8. Remove the points from the final stripe from the input, and 

repeat from step1.

Finalize the results, detecting noise etc.

Results.  Figure 4. shows a very simple example of the algorithm.

Figure 4.
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This is an example of applying the multiple-line fitting algorithm. The input data has 25 

points, which forms a straight line.  Fig4a shows the plot of the points just for 

demonstration.  Then the space is cut into 5 stripes. Since all 5 stripes have the same line 

score 1.4, we can start with any of these stripes and the result is exactly the same.  In this 

case the stripe between the highlighted blue lines are chosen (Fig4a).  A line is fitted 

within the chosen stripe.  Then we redefine the stripe as shown in Fig4b, with the line 

fitted in Fig4a in the middle of the stripe.  To calculate the distances of points to the line 

within the stripe, we can apply the equation of distance between a point and a line:
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Then we refit the line using the new stripe to get the final line that has the line score 2 

(the maximum line score).  This is rather an example of ideal situation. It is only to 

demonstrate the basic principle of the algorithm.

Now let’s look at a more complicated example.  The input contains 81 points, total 3 

lines, with 25 points to each line, and 6 noise points (Appendix1).  The goal is to detect 

the 3 lines accurately using the algorithm. Figures below show in detail how the 

algorithm works.



                      Figure 5 (a).

Figure 5 (b).

Figure 5 (c).

Figure b, shows the space is divided into 

5 vertical stripes.  (step 1 &2)

The stripe highlighted in Blue has the 

highest line score, 0.578

Figure c is the stripe highlighted in blue cut 

off from b, and stretched. (Step 3)

A line is fitted within this stripe as shown in 

the c.  

There are some noises within this stripe and 

fragment of 2 lines are contained in this 

stripe too.  To filter out the noise, 3 types of 

residuals are used:  regular residual, student 

residual, and jackknife residual.  The 

definitions of the residuals are list in 

appendix 2.

Figure a is a plot of all input points.

Green, red, and black dots indicate 3 

lines; blue triangles indicate noise.  

It is obvious to humans that there are 3 

lines, however the computer requires 

sophisticated method to detect all 3 lines 

accurately.



Figure 5 (d).

Figure 5 (e).

Figure 5 (f).

Figure d shows the stripe 1 again, this time 

with the outlier filtered out. (Step 3)

The outliers are filtered out based a critical 

value cutoff points.  If any of the 3 

residuals is bigger than the critical value, it 

is filtered out.  All 3 residuals are used for 

conservative purpose.

Figure e shows the recalculated stripe. 

(Step 3 & 4)

We fit the line within the stripe, then, 

remove the outliers.  We should get the line 

represented by the green dots.

Figure f

Now we attempt to recalculate the stripe, 

and we find that there are no new points 

added to stripe, or the line score is not 

increasing anymore.  We know that we 

have found 1 line.  Now we remove the 

points on that line from the space, we get 

figure f.



Figure 5 (h).

Figure 5 (g).

With the same input, we apply the K-mean line-fitting algorithm (appendix 3) for 

comparison. K-mean is a special case of EM algorithm. As mentioned before, the 

problem with EM algorithm that we have to guess how many lines are there but there is 

no guarantee that such guesses are correct. 

Figure g

We repeat the process, at the end we get 

only the noise left as shown on figure g.

At this point, we can keep fitting, however 

the line score of fitted noise line, will be 

significantly smaller than the other line 

scores.   We then know we should stop.

Figure h

This is the final result from applying the 

algorithm.



Figure 6

              

Fig 6a: K-mean algorithm applied here with 2 lines, and points are randomly assigned to 

each line at the beginning. Fig 6b: K mean algorithm applied with 3 lines.

K-Mean line-fitting algorithm can generate correct results if one is lucky enough to guess 

the correct number of lines and if the initial assignment of points is reasonable. This is 

the reason that the K-Mean line-fitting algorithm may generate incorrect results in this 

example. 

Discussion.  Although this multiple-line fitting algorithm is not perfect as there are some 

extreme cases that it cannot handle.  For example, if two lines are very close to each other 

and almost parallel, there is a chance that the initial stripe partition does not partition 

them into 2 stripes.  If that is the case, the algorithm will fail to recognize that those are 

actually two distinctive lines.  Consider another case as shown in figure 7:

                                 Figure 7

Figure 7

There are clearly 2 lines in the plot: one 

in red and one in black. After applying 

the algorithm, the black line is included 

in the stripe, however one red point is 

also included.  That point is an outlier, 

but it is undetectable by checking the 

residuals since it is located on the fitted 

line.

 Fig 6a                                                      Fig6b



To avoid this problem, first project all the points fitted by the line-fitting equation to the 

line. Then we assume that the distances between one point and the one next to it is 

normally distributed with positive values. Now we can use this normal distribution to 

conduct a Z test on potential outliers undetectable by checking the residual statistics.  By 

doing this we can successfully filter out the red point from the black line.

There are several advantages of this algorithm. First and the most important, it does not 

require an initialization.  Initial guessing of number of lines and point assignment are not 

needed. Without having to guess the initial line parameters, this algorithm avoids the 

local optimum problem.  Figure 1a and 1b shows 2 examples of local optimum problem 

when applying the EM algorithm.  However, by applying this new algorithm for this 

case, it will generate correct results. Secondly, with the K-Mean algorithm, all points get 

used even the noise. This new algorithm is able to detect the noise and filter them out.

There are also some things about this algorithm need to be improved in future.  There is 

always a question that how to divide the space into stripes at the beginning, and to decide 

the direction of the stripes.  In the examples showed earlier, cutting 5 vertical stripes are 

good enough.  But in some other times, this may not be the case. This remains to be a 

problem to be investigated.

There are also some areas that can be improved.  For example, the line score function is 

defined as 
2

n

S R

N

= + .   Only 
2

R  and 

n

N

 are considered in this equation and a simple 

linear relationship between them is assumed, however, there may be more potential 

factors other than these two.  Also we may try to weight between 
2

R  and 

n

N

 to assign 

different proportions of these two terms.  

Conclusion.  The multiple-line fitting algorithm works in many of the multiple-line 

fitting cases.  It utilized least square fitting method, which has been studied widely.  

Since it does not require initial guessing of the line parameters, it successfully avoids the 

local optimum problem in the EM algorithm. Although there are some intrinsic details 

need to be taken care of for this algorithm, test examples show that on average this 

algorithm produces more reliable results comparing to the EM algorithm. Since this 

algorithm takes a heuristic approach, it may require a lot of tests to decide what kind of 



setting is better on a regular base rather than choosing the one works better only in some 

special cases.    

Appendix 1.  Example 2 input data

Line 1 Line 2 Line 3 Noise

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

10 13

10 14

10 15

10 16

10 17

10 18

10 19

10 20

10 21

10 22

10 23

10 24

10 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

3.0 1

3.1 2

3.2 3

3.3 4

3.4 5

3.5 6

3.6 7

3.7 8

3.8 9

3.9 10

4.0 11

4.1 12

4.2 13

4.3 14

4.4 15

4.5 16

4.6 17

4.7 18

4.8 19

4.9 20

5.0 21

5.1 22

5.2 23

5.3 24

5.4 25

16 3

17 18

23 9

21 14

1 20

6 18

Appendix 2 The residuals

Regular Student Jackknife Leverage
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Appendix 3 K-Mean Line Fitting algorithm

Choose k lines (perhaps uniformly at random)

Or choose L

Until convergence

E-step:

 Recompute  L , from perpendicular distances

M-step:

 Refit lines using weights in L

End


