Graphs

Graphs

- Graphs are mathematical structures used to model pairwise relations between abstract objects
- Graphs are a set of Vertices and Edges

$$
\begin{gathered}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\text { Where } \mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}\right\} ; \\
\text { And } \mathrm{E}=\left\{\mathrm{e}_{\mathrm{k}}=\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\rangle\right\}
\end{gathered}
$$

- Graphs can be directed or undirected
- Directed is one way
- Undirected is bi-directional

Graphs

- Graphs do not have a given structure
- Data may not be comparable
- They can contain cycles
- The structure of the graph is usually dependent on the problem being solved
- Vertices may be considered as an abstract object
- Edges may be considered the relationship between those objects
- Edges may have associated values called weights

Graphs

- A map can be considered a graph
- Cities are Vertices
- Edge weights are the distance between them
- Finding a shortest path is a classic problem that can be solved with a graph

Graphs

- Popular ways to implement a graph
- Adjacency Matrix
- Adjacency List (Linked Structure)
- Incident Matrix

Adjacency

Matrix

- Rows and Columns represent the Vertices

Adjacency Matrix

- If the graph has n nodes then the matrix will be $n \times n$
- Rows are the "from Vertex"
- Columns are the "to Vertex"
- Non-zero values stored in the matrix represent edges and their weights

	V 1	V 2	V 3	V 4	V 5	V 6	V 7
V1	0	1	0	1	0	0	0
V2	0	0	0	1	0	0	0
V3	1	0	0	0	1	1	0
V4	0	0	1	0	1	0	0
V5	0	0	0	0	0	1	1
V6	0	0	0	0	0	0	0
V7	0	0	0	0	0	0	0

Adjacency Matrix

Adjacency Matrix

	V1	V2	V3	V4	V5	V6	V7
V1	0	1	0	1	0	0	0
V2	0	0	0	1	0	0	0
V3	1	0	0	0	1	1	0
V4	0	0	1	0	1	0	0
V5	0	0	0	0	0	1	1
V6	0	0	0	0	0	0	0
V7	0	0	0	0	0	0	0

Graph

Traversals

- Travel through the graph structure systematically
- Can be used to search the graph, find paths, or detect features of a graph
- Common Graph Traversals
- Depth First Search (DFS)
- Stack Based
- Breadth First Search (BFS)
- Queue Based

DFS

Algorithm

- Assume that each vertex has a unique identifier and we have a List of "marked vertices"

1. Start from an arbitrary vertex
2. Add the vertex's identifier to the marked vertices list
3. Follow an outgoing edge
4. If that vertex is part of the marked list then backtrack to the previous vertex
5. Otherwise repeat step 2 until there are no more reachable nodes

DFS

Example

	Adjacency Matrix							
		V1	v2	v3	V4	V5	V6	V7
	V1	0	1	0	1	0	0	0
	V2	0	0	0	1	0	0	0
	V3	1	0	0	0	1	1	0
	V4	0	0	1	0	1	0	0
	V5	0	0	0	0	0	1	1
	V6	0	0	0	0	0	0	0
	V7	0	0	0	0	0	0	0

DFS

Example

	Adjacency Matrix							
		V1	V2	V3	V4	V5	V6	V7
	V1	0	1	0	1	0	0	0
	V2	0	0	0	1	0	0	0
	V3	1	0	0	0	1	1	0
	V4	0	0	1	0	1	0	0
	V5	0	0	0	0	0	1	1
	V6	0	0	0	0	0	0	0
	V7	0	0	0	0	0	0	0

DFS

Example

DFS

Example

DFS

Example

DFS

Example

DFS

Example

(

DFS

Example

(

DFS

Example

DFS

Example

DFS

Example

(

DFS

Example

DFS

Example

(

DFS

Example

(

DFS

Example

DFS

Example

DFS

Example

BFS

Algorithm

- Assume that each vertex has a unique identifier and we have a List of "marked vertices" and a Queue of vertices

1. Start from an arbitrary vertex
2. Add the vertex's identifier to the marked vertices list and the vertex queue
3. Dequeue a vertex
4. Enqueue all outgoing edges from that vertex as long as the vertex is not already in the queue or marked list
5. Follow an outgoing edge
6. Repeat Step 3 until the Queue is empty

BFS

Example

											V1	V2	V3	V4	V5	V6	V7
										V1	0	1	0	1	0	0	0
										V2	0	0	0	1	0	0	0
										v3	1	0	0	0	1	1	0
										V4	0	0	1	0	1	0	0
										v5	0	0	0	0	0	1	1
										V6	0	0	0	0	0	0	0
										V7	0	0	0	0	0	0	0
										${ }_{\substack{\text { Marked } \\ \text { List }}}^{\text {der }}$							
										Vertex Q							

BFS

Example

	Adjacency Matrix							
		V1	V2	V3	V4	V5	V6	V7
	V1	0	1	0	1	0	0	0
	V2	0	0	0	1	0	0	0
	V3	1	0	0	0	1	1	0
	V4	0	0	1	0	1	0	0
	V5	0	0	0	0	0	1	1
	V6	0	0	0	0	0	0	0
	V7	0	0	0	0	0	0	0
	${ }_{\text {Marked }}^{\text {List }}$	v1						
	Vertex 0	v1						

BFS

Example

	Adjacency Matrix							
		V1	v2	v3	V4	V5	V6	V7
	V1	0	1	0	1	0	0	0
	V2	0	0	0	1	0	0	0
	V3	1	0	0	0	1	1	0
	V4	0	0	1	0	1	0	0
	V5	0	0	0	0	0	1	1
	V6	0	0	0	0	0	0	0
	V7	0	0	0	0	0	0	0
	$\underset{\substack{\text { Marked } \\ \text { List }}}{ }$	v1						
	Vertex Q							

BFS

Example

	Adjacency Matrix							
		V1	v2	V3	V4	V5	V6	V7
	V1	0	1	0	1	0	0	0
	V2	0	0	0	1	0	0	0
	V3	1	0	0	0	1	1	0
	V4	0	0	1	0	1	0	0
	V5	0	0	0	0	0	1	1
	V6	0	0	0	0	0	0	0
	V7	0	0	0	0	0	0	0
	$\underset{\substack{\text { Marked } \\ \text { List }}}{\text { der }}$	v1						
	Vertex 0	v2	v4					

BFS

Example

DFS

Example

BFS

Example

