


Heaps Part 02



• Definition: A data structure that can be 
defined recursively as a collection of nodes, 
where each node is a data structure 
consisting of a value, together with a list of 
references (edges) to nodes, with the 
constraints that no reference is duplicated, 
and none points to the root.

Trees



• Trees Have
– Nodes
– Edges

• Trees CANNOT
– Contain Self-Referencing Edges
– Have Cycles
– Be Disjointed

Tree

Not Trees



• Binary Tree Structure
• Node’s data must be comparable
• Node’s have at most two children

– Left Child
– Right Child

• Max Heap: Children must be less than or 
equal to the parent

• Min Heap: Children must be greater than or 
equal to the parent 

• Assume Leaves are NULL references
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• Array Heap
• Assume Root is at Index 0
• Left Child Index = Parent Index * 2 + 1
• Right Child Index = Parent Index * 2 + 2
• Parent Index = (Child Index-1)/2

Min Heap
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Array Max Heap



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index
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• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”
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– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index
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• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index
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– From that node “bubble up” the data if 
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then swap that information
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– Continue swapping child data with parent data 
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• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
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• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index
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• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds
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• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
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• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root
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– Pick the smaller of the 2 children
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• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
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• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 
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• Remove
– Store the data at the Root
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node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root
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– If its value is smaller than the parent, then 
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• Remove
– Store the data at the Root
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node in Breadth Order
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information
– Return the stored value, previously at the root
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• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 
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information
– Return the stored value, previously at the root
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• Heap Sort Min Heap
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• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!
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What?



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!
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• Heap Sort
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2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}



• Heap Sort
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• Heap Sort
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• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
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• Heap Sort
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• Heap Sort
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• Heap Sort
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• Heap Sort
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• Heap Sort
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• Heap Sort
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2. Remove All Values from the Heap
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• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
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• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}
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• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}
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• Worst Case
– Sorted in Descending Order

• Operations
– Add all n values
– Remove all n values

• Special Consideration
– Heaps are always balanced trees

Complexity

?



• Worst Case
– Sorted in Descending Order

• Operations
– Add all n values
– Remove all n values

• Special Consideration
– Heaps are always balanced trees

Complexity

O(n(lgn))
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