


Heaps Part 02



• Definition: A data structure that can be 
defined recursively as a collection of nodes, 
where each node is a data structure 
consisting of a value, together with a list of 
references (edges) to nodes, with the 
constraints that no reference is duplicated, 
and none points to the root.

Trees



• Trees Have
– Nodes
– Edges

• Trees CANNOT
– Contain Self-Referencing Edges
– Have Cycles
– Be Disjointed

Tree

Not Trees



• Binary Tree Structure
• Node’s data must be comparable
• Node’s have at most two children

– Left Child
– Right Child

• Max Heap: Children must be less than or 
equal to the parent

• Min Heap: Children must be greater than or 
equal to the parent 

• Assume Leaves are NULL references

Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull



• Array Heap
• Assume Root is at Index 0
• Left Child Index = Parent Index * 2 + 1
• Right Child Index = Parent Index * 2 + 2
• Parent Index = (Child Index-1)/2

Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

0 1 2 3 4 5 6 7 8 9 10 11 12

1 3 2 5 6 4 - - - - - - -

Array Max Heap



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

1

3 2

5 6 4

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

0



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

1

3 2

5 6 4

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

0



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

1

3 0

5 6 4

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

2



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

1

3 0

5 6 4

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

2



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

0

3 1

5 6 4

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

2



• Add
– Replace the first leaf in breadth order with the 

new data
– From that node “bubble up” the data if 

necessary

• Bubble Up
– If the child’s data is smaller than the parent 

then swap that information
– Continue swapping child data with parent data 

until the parent is smaller than the child or we 
reach the root index

Example Adding “0”

0

3 1

5 6 4

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

Return Value: 1



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

1

3 2

5 6 4
null

nullnullnullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12]

Return Value: 1



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

4

3 2

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

Return Value: 1

null



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

4

3 2

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

Return Value: 1

null



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

2

3 4

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

Return Value: 1

null



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

2

3 4

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

Return Value: 1

null



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove

2

3 4

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

null



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

2

3 4

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

null



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

2

3 4

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

2

3 4

5 6
null

nullnullnullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

6

3 4

5
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

6

3 4

5
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

3

6 4

5
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

3

6 4

5
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

3

5 4

6
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

3

5 4

6
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null

Return Value: 2



• Remove
– Store the data at the Root
– Replace the Root data with the Data in the last 

node in Breadth Order
– Starting from the root, “Bubble Down” that 

information
– Return the stored value, previously at the root

• Bubble Down
– Pick the smaller of the 2 children
– If its value is smaller than the parent, then 

swap those values
– Continue this until the parent’s value is smaller 

or we reach the tree’s bounds

Example Remove Again

3

5 4

6
nullnull

nullnull

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8]

null



• Heap Sort Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull



What?



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Min Heap

1

3 2

5 6 4
null

nullnullnullnullnullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

5

nullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

5

null

1

null null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

null

5

null null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

5

null null

4

null null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

5

null

4

null null
3



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

3

null

4

null null
5



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

3 4

null null
5 6



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

3 4

null
5 6 2



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

3 2

null
5 6 4



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

1

3 2

null
5 6 4

Returned Values: 



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

4

3 2

null
5 6

Returned Values: 1,

null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

2

3 4

null
5 6

Returned Values: 1,

null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

6

3 4

null
5

Returned Values: 1, 2

nullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

3

6 4

null
5

Returned Values: 1, 2

nullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

3

5 4

null
6

Returned Values: 1, 2

nullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

6

5 4

null

Returned Values: 1, 2, 3

nullnullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

4

5 6

null

Returned Values: 1, 2, 3

nullnullnull



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

6

5

Returned Values: 1, 2, 3, 4

nullnull

null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

5

6

Returned Values: 1, 2, 3, 4

nullnull

null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

6

Returned Values: 1, 2, 3, 4, 5

null null



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

Returned Values: 1, 2, 3, 4, 5, 6



• Heap Sort
1. Add all Values to the Heap
2. Remove All Values from the Heap
3. DONE!

Heap Sort Values {5,1,4,3,6,2}

DONE!

Returned Values: 1, 2, 3, 4, 5, 6



• Worst Case
– Sorted in Descending Order

• Operations
– Add all n values
– Remove all n values

• Special Consideration
– Heaps are always balanced trees

Complexity

?



• Worst Case
– Sorted in Descending Order

• Operations
– Add all n values
– Remove all n values

• Special Consideration
– Heaps are always balanced trees

Complexity

O(n(lgn))


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62

