

Binary Search Trees
Part 02

• Definition: A data structure that can be
defined recursively as a collection of nodes,
where each node is a data structure
consisting of a value, together with a list of
references (edges) to nodes, with the
constraints that no reference is duplicated,
and none points to the root.

Trees

• Trees Have
– Nodes
– Edges

• Trees CANNOT
– Contain Self-Referencing Edges
– Have Cycles
– Be Disjointed

Tree

Not Trees

Common Terms
• Root – The top node in a tree.
• Child – A node’s reference which is at a lower level
• Parent – The converse notion of child.
• Siblings – Nodes with the same parent.
• Leaf – a node with no children.
• Degree – number of sub trees of a node.
• Edge – connection between one node to another.
• Path – a sequence of nodes and edges connecting a node with

a descendant.
• Level – The level of a node is defined by 1 + the number of

connections between the node and the root.
• Height of tree –The height of a tree is the number of edges on

the longest downward path between the root and a leaf.
• Height of node –The height of a node is the number of edges

on the longest downward path between that node and a leaf.
• Depth –The depth of a node is the number of edges from the

node to the tree's root node.

Trees

• Tree Structure
• Node’s data must be comparable
• Node’s have at most two children

– Left Child
– Right Child

• Left child’s value must be LESS THAN the
parent’s value

• Right child’s value must be GREATER THAN
the parent’s value

• No Duplicate Values
• Assume Leaves are NULL references

Binary Search Tree

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

• Search
– Start from the Root
– If it is a leaf then return false
– If the target value matches the Node’s data

then return true
– If the target value is less than the Node’s data

then recursively GO LEFT
– If the target value is greater than the Node’s

data then recursively GO RIGHT

Binary Search Tree

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Binary Search Tree

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

4 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 2

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

4 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 4

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 2 Example

8

4 12

1 10 16

nullnullnullnull

null

nullnull

Target = 4

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

10

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

10

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 8

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

10

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 10

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

10

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

Target = 10

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

10

2 12

1 4 16

nullnull

null

nullnullnullnull

Target = 10

• Remove
– Find the Node with the target value that is to

be removed
– If that Node has no children then remove that

Node’s reference from its parent
– If that Node has exactly one child (left or

right), then replace that Node’s reference from
its parent with reference to its child

– If that Node has 2 children then replace its
value with the SMALLEST value found in the
RIGHT subtree, then remove the duplicate
node from the RIGHT subtree

Remove 8 Example

10

2 12

1 4 16

nullnull

null

nullnullnullnull

• Complexity depends on the structure of the
tree

• Balanced Trees
– From the root to any leaf there are AT MOST

lg(n) edges

• Unbalanced Trees
– Have at least one path from root to a leaf that

is more than lg(n) edges

Balanced Tree

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

• Complexity depends on the structure of the
tree

• Balanced Trees
– From the root to any leaf there are AT MOST

lg(n) edges

• Unbalanced Trees
– Have at least one path from root to a leaf that

is more than lg(n) edges

Unbalanced Tree

8

2

12

1

4

10

16

nullnull

null

null

null

null

null

null

• Unbalanced Tree
– Add = O(n)
– Search = O(n)
– Remove = O(n)

Unbalanced Tree

8

2

12

1

4

10

16

nullnull

null

null

null

null

null

null

• Balanced Tree
– Add = O(lg(n))
– Search = O(lg(n))
– Remove = O(lg(n))

Balanced Tree

8

2 12

1 4 10 16

nullnullnullnullnullnullnullnull

• Self-Balancing Trees
– Change references until the tree is balanced
– Based on criteria like Height or Node “Color”

• Rotations are used to Balance the Tree
– Left Rotations
– Right Rotations

• Popular Self-Balancing Trees
– AVL
– Red / Black Tree

Right Rotation on A

Left Rotation on A

A

B

X Y

Z A

B

X

Y Z

B

A

X

Y Z

B

A

X Y

Z

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

