


Binary Search Trees
Part 02



• Definition: A data structure that can be 
defined recursively as a collection of nodes, 
where each node is a data structure 
consisting of a value, together with a list of 
references (edges) to nodes, with the 
constraints that no reference is duplicated, 
and none points to the root.

Trees



• Trees Have
– Nodes
– Edges

• Trees CANNOT
– Contain Self-Referencing Edges
– Have Cycles
– Be Disjointed

Tree

Not Trees



Common Terms
• Root – The top node in a tree.
• Child – A node’s reference which is at a lower level
• Parent – The converse notion of child.
• Siblings – Nodes with the same parent.
• Leaf – a node with no children.
• Degree – number of sub trees of a node.
• Edge – connection between one node to another.
• Path – a sequence of nodes and edges connecting a node with 

a descendant.
• Level – The level of a node is defined by 1 + the number of 

connections between the node and the root.
• Height of tree –The height of a tree is the number of edges on 

the longest downward path between the root and a leaf.
• Height of node –The height of a node is the number of edges 

on the longest downward path between that node and a leaf.
• Depth –The depth of a node is the number of edges from the 

node to the tree's root node.

Trees



• Tree Structure
• Node’s data must be comparable
• Node’s have at most two children

– Left Child
– Right Child

• Left child’s value must be LESS THAN the 
parent’s value

• Right child’s value must be GREATER THAN 
the parent’s value

• No Duplicate Values
• Assume Leaves are NULL references
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• Search
– Start from the Root
– If it is a leaf then return false
– If the target value matches the Node’s data  

then return true
– If the target value is less than the Node’s data 

then recursively GO LEFT
– If the target value is greater than the Node’s 

data then recursively GO RIGHT
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• Remove
– Find the Node with the target value that is to 

be removed
– If that Node has no children then remove that 

Node’s reference from its parent
– If that Node has exactly one child (left or 

right), then replace that Node’s reference from 
its parent with reference to its child

– If that Node has 2 children then replace its 
value with the SMALLEST value found in the 
RIGHT subtree, then remove the duplicate 
node from the RIGHT subtree
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• Complexity depends on the structure of the 
tree

• Balanced Trees
– From the root to any leaf there are AT MOST 

lg(n) edges

• Unbalanced Trees
– Have at least one path from root to a leaf that 

is more than lg(n) edges
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• Unbalanced Tree
– Add = O(n)
– Search = O(n)
– Remove = O(n)
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• Balanced Tree
– Add = O(lg(n))
– Search = O(lg(n))
– Remove = O(lg(n))
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• Self-Balancing Trees
– Change references until the tree is balanced
– Based on criteria like Height or Node “Color”

• Rotations are used to Balance the Tree
– Left Rotations
– Right Rotations

• Popular Self-Balancing Trees
– AVL
– Red / Black Tree
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