


Searching, Sorting, 
Complexity Part 02



• Efficiency
– Producing desired results with little to no waste
– Well organized and prevents wasteful use of a resource

• Resources
– Time
– Space

• How do we measure efficiency?
– Algorithms do not require computers



• Complexity
– Classifies Computational Problems based on inherent difficulty
– Relates problems to each other
– Time and Space

• Asymptotic Analysis
– A way to describe a limiting behavior / function
– Limits in math are a value that a function approaches as the input approaches some value
– Time and Space Complexity



• Theoretical upper bound of an algorithm
• The “Worst Case” scenario
• Let f and g be functions defined on some subset of real numbers

𝒇𝒇 𝒏𝒏 = 𝑶𝑶 𝒈𝒈 𝒏𝒏 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏 ∈ ℝ as 𝒏𝒏 → ∞

• Let M be a constant that’s sufficiently large then we can say

𝒇𝒇 𝒏𝒏 ≤ 𝑴𝑴 𝒈𝒈 𝒏𝒏 𝒇𝒇𝒇𝒇𝒘𝒘 𝒂𝒂𝒂𝒂𝒂𝒂 𝒏𝒏 ≥ 𝒏𝒏𝟎𝟎



• Common Big O Complexities
– O(1) – Constant
– O(log(n)) – Logarithmic
– O(n) – Linear
– O(nlogn) – Linearithmic
– O(n2) – Quadratic
– O(2n) – Exponential “Bad”
– O(n!) – Factorial “Really Bad”

Big O



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 12 10 11 9

Smallest

Start



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 12 10 11 9

Smallest

Start



A Few Swaps Later



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12



• Worst Case
– Sorted in Descending Order

• Operations
– Search for smallest value = n
– Search for the next smallest value = n – 1
– Search for the next smallest value = n – 2
– …
– Search for the largest element = 1

Complexity



• Worst Case
– Sorted in Descending Order

• Operations
– Search for smallest value = n
– Search for the next smallest value = n – 1
– Search for the next smallest value = n – 2
– …
– Search for the largest element = 1

Complexity

O(n2)



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 10 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 10 6 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 5 12 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 5 12 11 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 5 11 12 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 5 11 12 9



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 5 11 9 12



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 5 11 9 12



A Few Swaps Later



• Bubble Sort
1. Start from index 0
2. Check each index with its neighbor 

(index+1)
3. If that neighbor’s value is smaller then swap 

with the current index’s value
4. Repeat step 1 until no swaps have been 

made

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12



• Worst Case
– Sorted in Descending Order

• Operations
– Bubble Up Largest Value = n
– Bubble Up Next Largest Value = n – 1
– Bubble Up Next Largest Value = n – 2
– …
– Smallest Value = 1

Complexity



• Worst Case
– Sorted in Descending Order

• Operations
– Bubble Up Largest Value = n
– Bubble Up Next Largest Value = n – 1
– Bubble Up Next Largest Value = n – 2
– …
– Smallest Value = 1

Complexity

O(n2)



Can we do better?



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3 4 5 6 7

10 8 7 6 12 5 11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3 4 5 6 7

10 8 7 6 12 5 11 9

0 1 2 3

10 8 7 6

0 1 2 3

12 5 11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

10 8 7 6

0 1 2 3

12 5 11 9

0 1

10 8

0 1

7 6

0 1

12 5

0 1

11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

10 8

0 1

7 6

0 1

12 5

0 1

11 9

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8

i

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10

0 1

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10

0 1

6 7



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

i j

0 1 2 3

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

i j

0 1 2 3

6

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

i

0 1 2 3

6 7

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5 9

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11

i

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8 9

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8 9 10

j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8 9 10 11 12



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3 4 5 6 7

5 6 7 8 9 10 11 12



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity Visual

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1

…

…



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity Visual

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1

…

…

lg(n)



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity Visual

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1

…

…

lg(n)

n



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity

O(nlg(n))



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

i

j

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

i

j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9

i

j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 10 7 6 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 10 6 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 10 6 12 5 11 9

i

j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 10 6 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9

i

j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 10 12 5 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 12 10 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 12 10 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 12 10 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 12 10 11 9

i j

pivot

If value at j is smaller than the pivot then 
swap values at i and j and increase i by 1



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 12 10 11 9

i

pivot

Swap values at i and the pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 12 10 11 9

i

pivot

Swap values at i and the pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 9 10 11 12

i

Swap values at i and the pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

j

pivotpivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

j

pivotpivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

j

pivotpivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 8 7 6 5 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

j

pivotpivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

jj

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

jj

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

jj

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

jj

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 7 6 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j

j

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

jj

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

pivot

i

j



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

i



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

i

j

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

i

j

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

i



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition

i

j

pivot



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Recursively do the same for the values to the 
left of the partition and to the right of the 

partition



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j

pivot



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

i

j



• Worst Case
– Sorted in Ascending Order
– Assuming pivot is always picked from the last 

index

• Operations
– The first index moves n spaces
– The first index moves n-1 spaces
– The first index moves n-2 spaces
– …
– The first index moves 1 space

Complexity

O(n2)



Merge Sort
• Worst Time Complexity = O(nlg(n))
• Average Time Complexity = Ⲑ(nlg(n))
• Worst Space Complexity = O(n) additional

Quick Sort
• Worst Time Complexity = O(n2)
• Average Time Complexity = Ⲑ(nlg(n))
• Worst Space Complexity = O(lg(n)) additional


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149

