


Searching, Sorting, 
Complexity Part 02



• Efficiency
– Producing desired results with little to no waste
– Well organized and prevents wasteful use of a resource

• Resources
– Time
– Space

• How do we measure efficiency?
– Algorithms do not require computers



• Complexity
– Classifies Computational Problems based on inherent difficulty
– Relates problems to each other
– Time and Space

• Asymptotic Analysis
– A way to describe a limiting behavior / function
– Limits in math are a value that a function approaches as the input approaches some value
– Time and Space Complexity



• Theoretical upper bound of an algorithm
• The “Worst Case” scenario
• Let f and g be functions defined on some subset of real numbers

𝒇𝒇 𝒏𝒏 = 𝑶𝑶 𝒈𝒈 𝒏𝒏 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏 ∈ ℝ as 𝒏𝒏 → ∞

• Let M be a constant that’s sufficiently large then we can say

𝒇𝒇 𝒏𝒏 ≤ 𝑴𝑴 𝒈𝒈 𝒏𝒏 𝒇𝒇𝒇𝒇𝒘𝒘 𝒂𝒂𝒂𝒂𝒂𝒂 𝒏𝒏 ≥ 𝒏𝒏𝟎𝟎



• Common Big O Complexities
– O(1) – Constant
– O(log(n)) – Logarithmic
– O(n) – Linear
– O(nlogn) – Linearithmic
– O(n2) – Quadratic
– O(2n) – Exponential “Bad”
– O(n!) – Factorial “Really Bad”

Big O



• Problem:
– Given any array of integers, develop an algorithm 

that sorts the values from smallest to largest.
• Selection Sort

1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9
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A Few Swaps Later
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• Worst Case
– Sorted in Descending Order

• Operations
– Search for smallest value = n
– Search for the next smallest value = n – 1
– Search for the next smallest value = n – 2
– …
– Search for the largest element = 1

Complexity
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• Worst Case
– Sorted in Descending Order

• Operations
– Bubble Up Largest Value = n
– Bubble Up Next Largest Value = n – 1
– Bubble Up Next Largest Value = n – 2
– …
– Smallest Value = 1

Complexity
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Can we do better?
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elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3 4 5 6 7

10 8 7 6 12 5 11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3 4 5 6 7

10 8 7 6 12 5 11 9

0 1 2 3

10 8 7 6

0 1 2 3

12 5 11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

10 8 7 6

0 1 2 3

12 5 11 9

0 1

10 8

0 1

7 6

0 1

12 5

0 1

11 9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

10 8

0 1

7 6

0 1

12 5

0 1

11 9

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8

i

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10

0 1

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10

0 1

6 7



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0

10

0

8

0

7

0

6

0

12

0

5

0

11

0

9

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

i j

0 1 2 3

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

i j

0 1 2 3

6

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

i

0 1 2 3

6 7

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5 9

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11

i

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1

8 10

0 1

6 7

0 1

5 12

0 1

9 11

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8 9

i j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8 9 10

j

k



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3

6 7 8 10

0 1 2 3

5 9 11 12

0 1 2 3 4 5 6 7

5 6 7 8 9 10 11 12



• Merge Sort
1. Recursively split the array in half until single 

elements remain
2. Merge two smaller arrays and return the 

sorted result
1. Create an array of combined size
2. Add elements from the two smaller arrays into 

the combined array in sorted order

3. Repeat Step 2 until the final array is reached

Example

0 1 2 3 4 5 6 7

5 6 7 8 9 10 11 12



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity Visual

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1

…

…



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity Visual

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1

…

…

lg(n)



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity Visual

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1

…

…

lg(n)

n



• Worst Case
– Sorted in Descending Order

• Operations
– Split
– Merge

Complexity

O(nlg(n))



• Quick Sort
1. Pick an arbitrary value called a “pivot” from 

the array
2. Using the pivot value “partition” the array

1. Reorder the array where smaller values are to 
the left of the pivot, and large / equal values are 
to the right

2. Once it has been partitioned the pivot value is 
where it should be

3. Recursively continue now with the array to 
the left, and the array to the right of the 
pivot
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Merge Sort
• Worst Time Complexity = O(nlg(n))
• Average Time Complexity = Ⲑ(nlg(n))
• Worst Space Complexity = O(n) additional

Quick Sort
• Worst Time Complexity = O(n2)
• Average Time Complexity = Ⲑ(nlg(n))
• Worst Space Complexity = O(lg(n)) additional
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