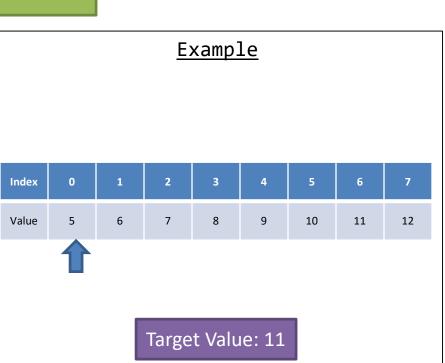
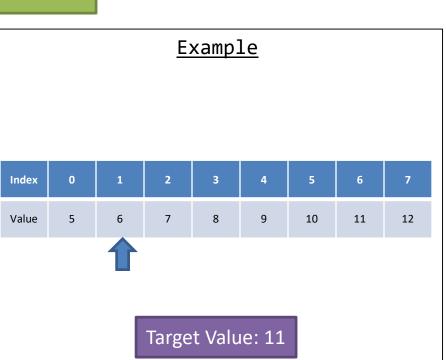
Searching, Sorting, Complexity

- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2

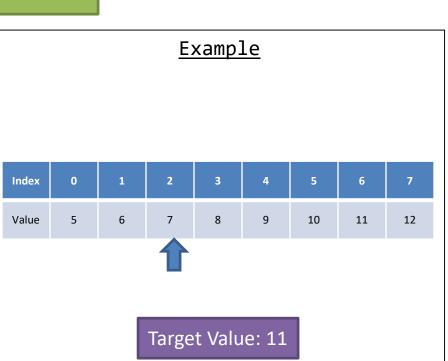
- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2



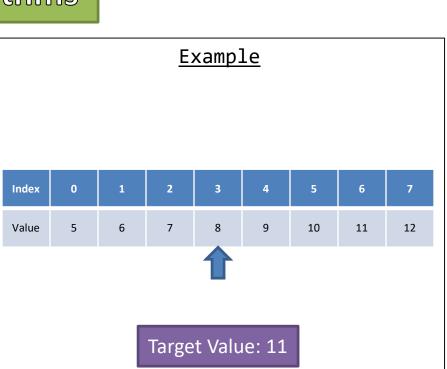
- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2



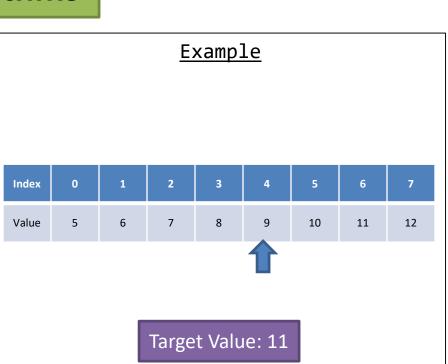
- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2



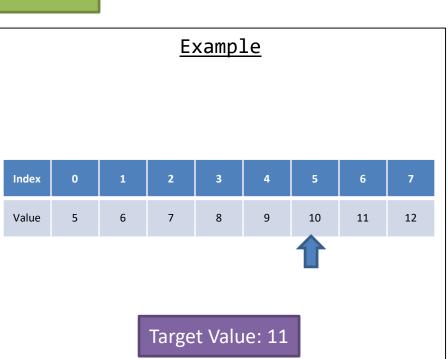
- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2



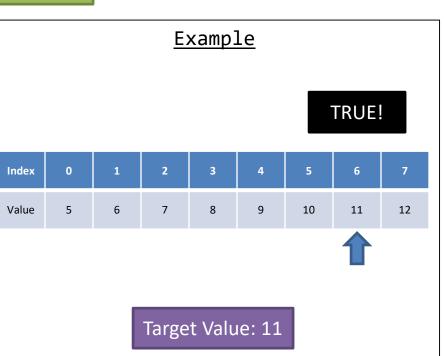
- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2



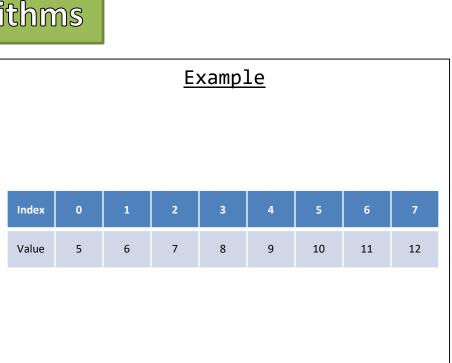
- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2



- Problem:
 - Given a sorted array of integers, develop an algorithm that returns true or false depending on if a target value was found in the array.
- Linear Search
 - 1. Start from index 0
 - 2. If the value at that index matches the target value then return true
 - 3. Otherwise move to the next index
 - 4. If the next index is outside of the array then return false
 - 5. Repeat Step 2

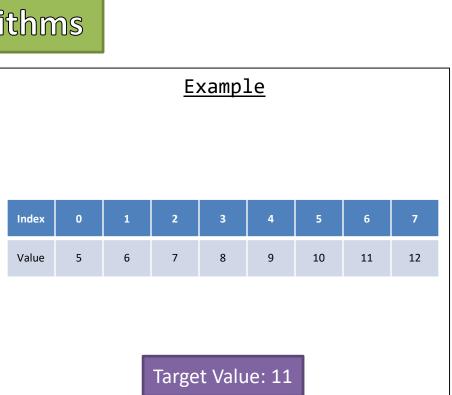


- Binary Search
 - 1. Assume the Start Index is 0 and the End Index is Array.length 1
 - Calculate the Middle Index from the Start and End Indices (middle = (start+end)/2)
 - 3. If the Middle Index is outside of the array then return false
 - 4. If the value at that index matches the target value then return true
 - 5. If the value at the index is greater than the target value, then repeat Step 2 with the same Start Index to the Middle Index 1
 - 6. If the value at the index is less than the target value, then repeat Step 2 starting with the Middle Index + 1 and the same End Index

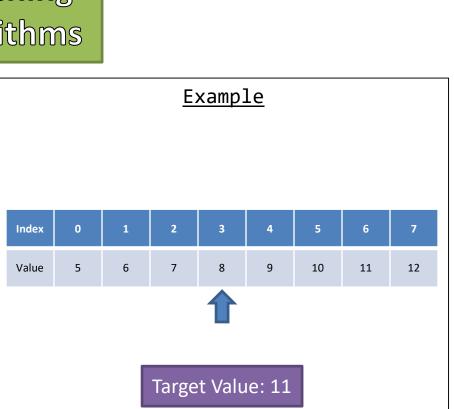


• Binary Search

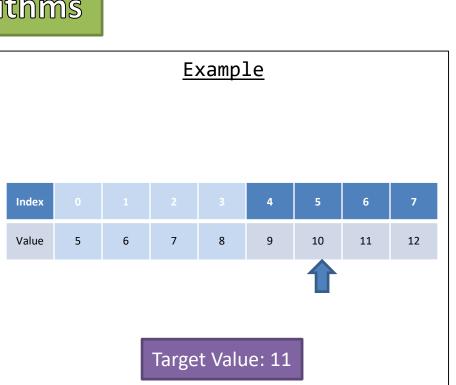
- 1. Assume the Start Index is 0 and the End Index is Array.length 1
- Calculate the Middle Index from the Start and End Indices (middle = (start+end)/2)
- 3. If the Middle Index is outside of the array then return false
- 4. If the value at that index matches the target value then return true
- 5. If the value at the index is greater than the target value, then repeat Step 2 with the same Start Index to the Middle Index 1
- 6. If the value at the index is less than the target value, then repeat Step 2 starting with the Middle Index + 1 and the same End Index



- Binary Search
 - 1. Assume the Start Index is 0 and the End Index is Array.length 1
 - Calculate the Middle Index from the Start and End Indices (middle = (start+end)/2)
 - 3. If the Middle Index is outside of the array then return false
 - 4. If the value at that index matches the target value then return true
 - 5. If the value at the index is greater than the target value, then repeat Step 2 with the same Start Index to the Middle Index 1
 - 6. If the value at the index is less than the target value, then repeat Step 2 starting with the Middle Index + 1 and the same End Index

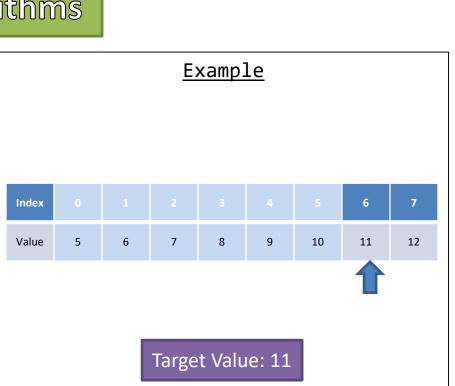


- Binary Search
 - 1. Assume the Start Index is 0 and the End Index is Array.length 1
 - Calculate the Middle Index from the Start and End Indices (middle = (start+end)/2)
 - 3. If the Middle Index is outside of the array then return false
 - 4. If the value at that index matches the target value then return true
 - 5. If the value at the index is greater than the target value, then repeat Step 2 with the same Start Index to the Middle Index 1
 - 6. If the value at the index is less than the target value, then repeat Step 2 starting with the Middle Index + 1 and the same End Index

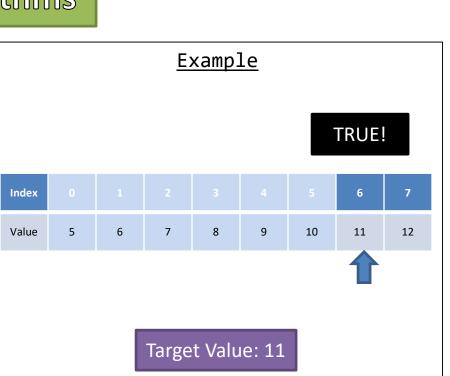


• Binary Search

- 1. Assume the Start Index is 0 and the End Index is Array.length 1
- Calculate the Middle Index from the Start and End Indices (middle = (start+end)/2)
- 3. If the Middle Index is outside of the array then return false
- 4. If the value at that index matches the target value then return true
- 5. If the value at the index is greater than the target value, then repeat Step 2 with the same Start Index to the Middle Index 1
- 6. If the value at the index is less than the target value, then repeat Step 2 starting with the Middle Index + 1 and the same End Index



- Binary Search
 - 1. Assume the Start Index is 0 and the End Index is Array.length 1
 - Calculate the Middle Index from the Start and End Indices (middle = (start+end)/2)
 - 3. If the Middle Index is outside of the array then return false
 - 4. If the value at that index matches the target value then return true
 - 5. If the value at the index is greater than the target value, then repeat Step 2 with the same Start Index to the Middle Index 1
 - 6. If the value at the index is less than the target value, then repeat Step 2 starting with the Middle Index + 1 and the same End Index



Which is more Efficient?

• Efficiency

- Producing desired results with little to no waste
- Well organized and prevents wasteful use of a resource

• Resources

– Time

– Space

- How do we measure efficiency?
 - Algorithms do not require computers

- Complexity
 - Classifies Computational Problems based on inherent difficulty
 - Relates problems to each other
 - Time and Space
- Asymptotic Analysis
 - A way to describe a *limiting* behavior / function
 - Limits in math are a value that a function *approaches* as the input *approaches* some value
 - Time and Space Complexity

- Theoretical upper bound of an algorithm
- The "Worst Case" scenario
- Let f and g be functions defined on some subset of real numbers

f(n) = O(g(n)) where $n \in \mathbb{R}$ as $n \to \infty$

• Let M be a constant that's sufficiently large then we can say

$|f(n)| \leq M|g(n)|$ for all $n \geq n_0$

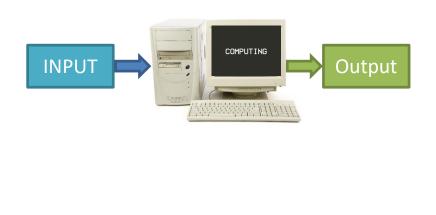
?

- Theoretical Model of a Computer
 - Input is passed to the Computer
 - Computer Computes
 - Computer Outputs the result
- Time Complexity
 - For a given amount of data (n) how many operations will the algorithm take to complete?
- Space Complexity
 - For a given amount of data (n) how much space will the algorithm require to complete?

Theoretical Model of a Computer

- Big O Time Complexity
 - For a given amount of data (n) AT MOST how many operations will the algorithm take to complete?
- Big O Space Complexity
 - For a given amount of data (n) AT MOST how much space will the algorithm require to complete?
- Assuming "AT MOST" means that we are viewing the "Worst Case" scenario
 - The case that would cause THE MOST operations to complete for time complexity
 - The case that would require THE MOST space to complete for space complexity

Theoretical Model of a Computer



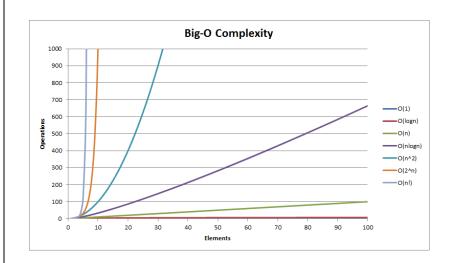
- We assign Big O function as a means to describe the time or space complexity given an input (n) as it approaches infinity
- Big O is an inequality
 - Does not have to be exactly equal
 - As long as the function being assigned (g(n)) is always larger than given function (f(n)), given a big enough constant (M), then we consider it to be Big O of the given function (f(n) = O(g(n))

$$f(n) = O(g(n))$$
 where $n \in \mathbb{R}$ as $n \to \infty$
such that,
 $|f(n)| \le M|g(n)|$ for all $n \ge n_0$

Bi<u>g O</u>

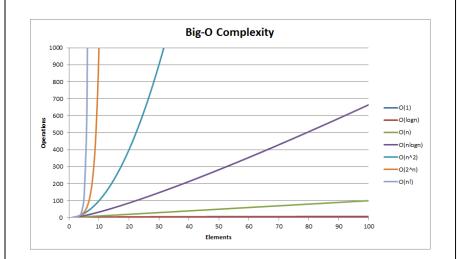
- Plotting these functions on a graph
 - Amount of Data (n)
 - Number of Operations (for time) or amount of space (for space)
- If we plot these functions on a graph, then a function (g(n)) is Big O of another function (f(n)) if the second function is below or equal to the first function's curve
- Examples

(f(n) = n) = O(n)	(f(n) = n²) ≠ O(n)
$(f(n) = n) = O(n^2)$	(f(n) = n!) ≠ O(n²)
$(f(n) = n^2 + n + 3) = O(n^3)$	(f(n) = n) ≠ O(1)
$(f(n) = n^2) = O(n!)$	(f(n) = 2 ⁿ) ≠ O(n)



Big O

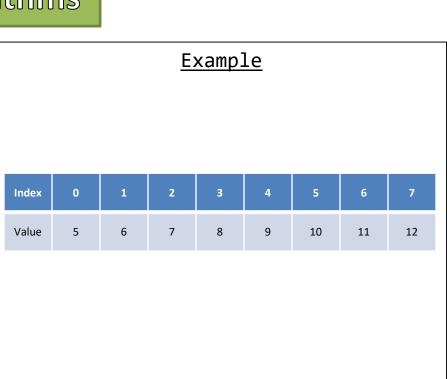
- Common Big O Complexities
 - O(1) Constant
 - O(log(n)) Logarithmic
 - O(n) Linear
 - O(nlogn) Linearithmic
 - $-O(n^2) Quadratic$
 - O(2ⁿ) Exponential "Bad"
 - O(n!) Factorial "Really Bad"



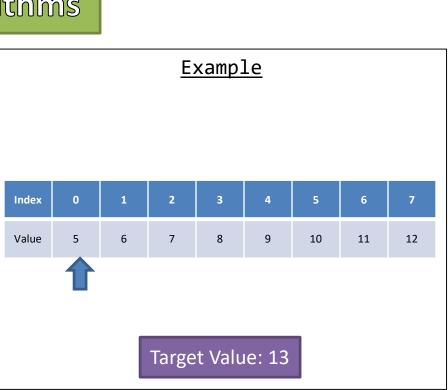
Big O

Applying this to the Examples

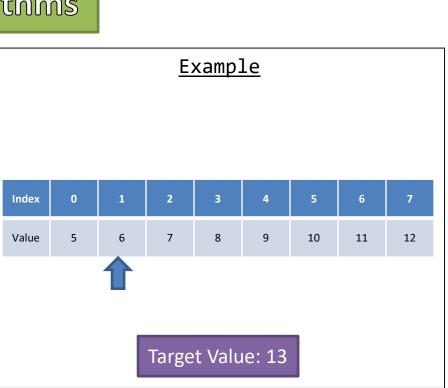
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



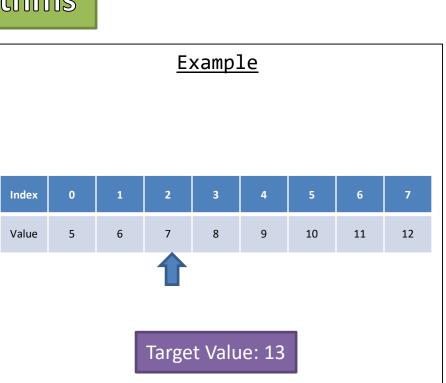
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



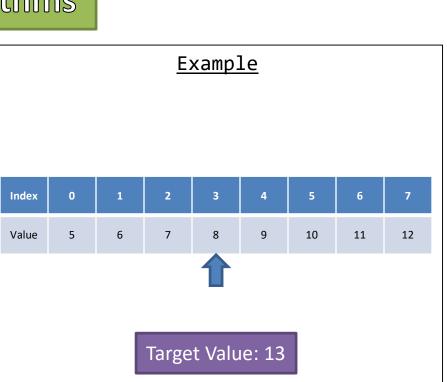
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



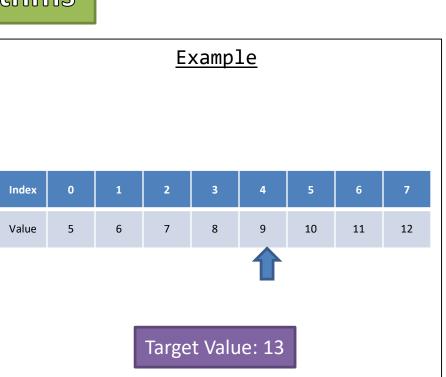
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



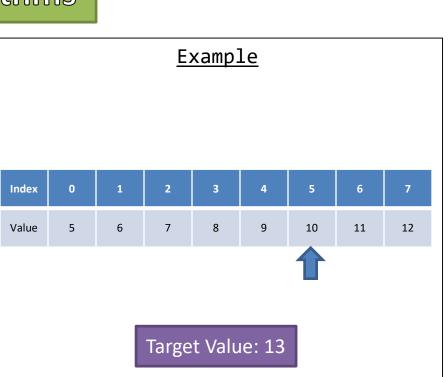
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



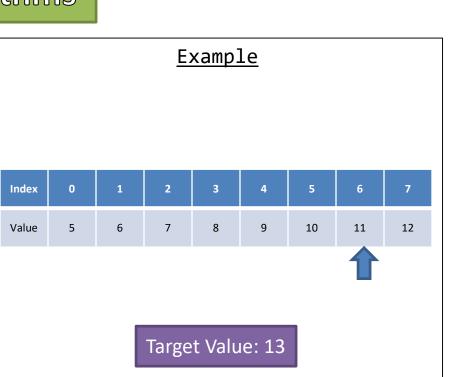
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



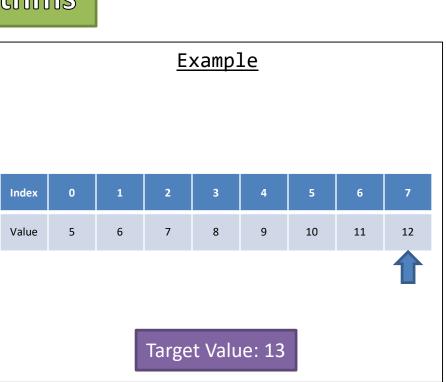
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



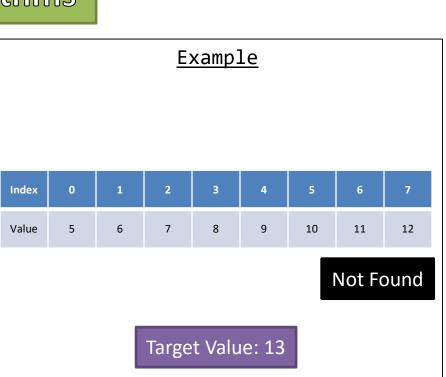
- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



- Linear Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)
 - 8 checks to determine it was not in the array
 - Assuming the array was size n then,

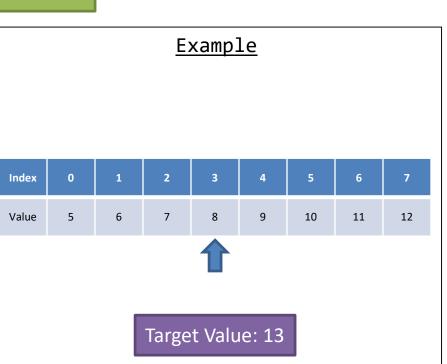
Linear Search O(n)

ithm	าร								
<u>Example</u>									
Index	0	1	2	3	4	5	6	7	
Value	5	6	7	8	9	10	11	12	
Not Found									
Target Value: 13									

- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



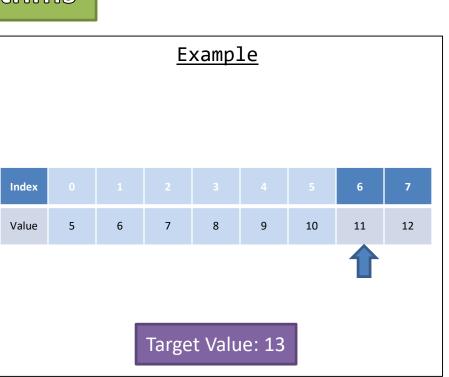
- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



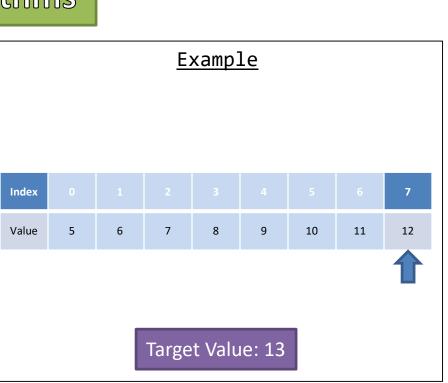
- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)



- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)
 - 3 checks to determine it was not in the array
 - Assuming the array was size n then,

ithn	ns									
<u>Example</u>										
Index		1	2		4		6	7		
Value	5	6	7	8	9	10	11	12		
Not Found										
Target Value: 13										

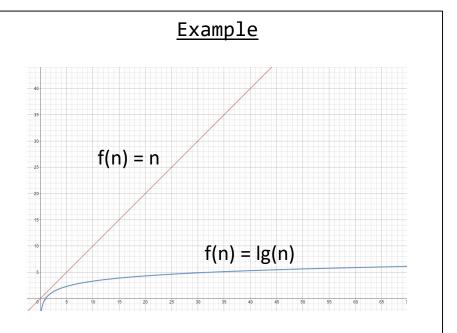
- Binary Search
 - How many operations will this take in the worst case?
 - Array is size 8 (n=8)
 - 3 checks to determine it was not in the array
 - Assuming the array was size n then,

Binary Search O(lg(n))

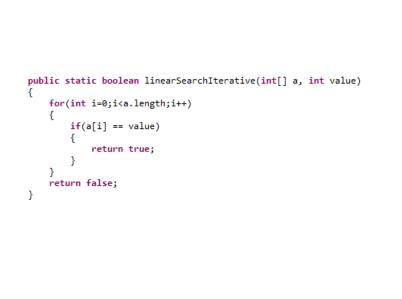
	12									
<u>Example</u>										
Index	0	1	2	3	4	5		7		
Value	5	6	7	8	9	10	11	12		
Not Found										
Target Value: 13										

Which one is better?

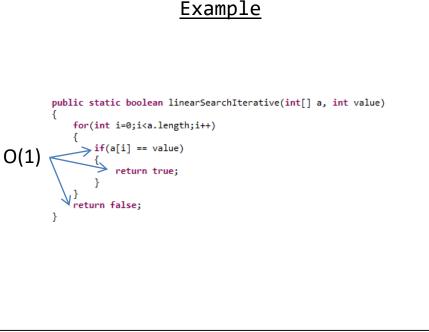
- Binary Search has a better time complexity than Linear Search
- Given the same amounts of data (n) Binary Search requires less steps to complete



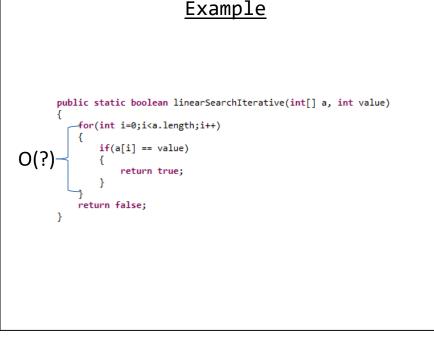
- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later



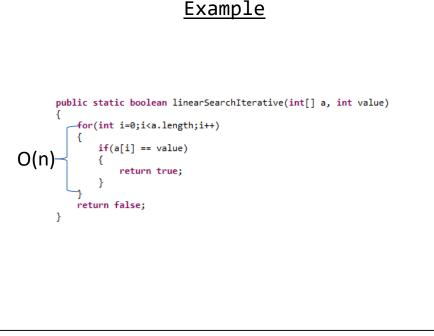
- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later



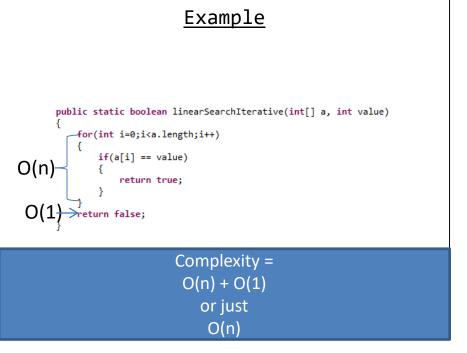
- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later



- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later



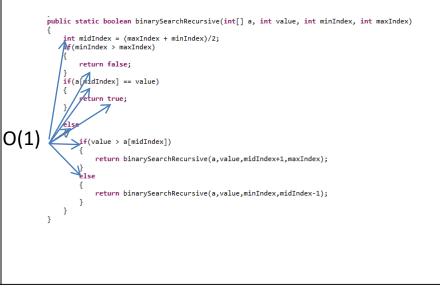
- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later



- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later

public static boolean binarySearchRecursive(int[] a, int value, int minIndex, int maxIndex) { int midIndex = (maxIndex + minIndex)/2; if(minIndex > maxIndex) { return false; } if(a[midIndex] == value) { return true; } else { if(value > a[midIndex]) { return binarySearchRecursive(a,value,midIndex+1,maxIndex); } else { return binarySearchRecursive(a,value,minIndex,midIndex-1); } } }

- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later



- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later

public static boolean binarySearchRecursive(int[] a, int value, int minIndex, int maxIndex) { int midIndex = (maxIndex + minIndex)/2; if(minIndex > maxIndex) { return false; if(a[midIndex] == value) { return true; } else { if(value > a[midIndex]) { return binarySearchRecursive(a,value,midIndex+1,maxIndex); else return binarySearchRecursive(a,value,minIndex,midIndex-1); } } }

- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later

public static boolean binarySearchRecursive(int[] a, int value, int minIndex, int maxIndex) { int midIndex = (maxIndex + minIndex)/2; if(minIndex > maxIndex) { return false; if(a[midIndex] == value) { return true; } else { if(value > a[midIndex]) { return binarySearchRecursive(a,value,midIndex+1,maxIndex); O(lg(n)) else return binarySearchRecursive(a,value,minIndex,midIndex-1); } } }

- Any simple statement is going to be O(1)
- Loops and recursion is where complexity increases
 - The number of times the loop runs or the number of times the recursive call is made
 - Observe how the inputted data (n) is being processed
- The largest complexity can be considered the method's Big O
 - Largest complexity is the function that approaches infinity faster
 - Doesn't have to be exact but close
 - An approximation that can be proven later

public static boolean binarySearchRecursive(int[] a, int value, int minIndex, int maxIndex) int midIndex = (maxIndex + minIndex)/2; if(minIndex > maxIndex) return false; if(a[midIndex] == value) return true: else if(value > a[midIndex]) return binarySearchRecursive(a,value,midIndex+1,maxIndex); O(lg(n))return binarySearchRecursive(a,value,minIndex,midIndex-1); Complexity = O(1)'s + O(lg(n))or just O(lg(n))