


Searching, Sorting, 
Complexity



• Problem:
– Given a sorted array of integers, develop an 

algorithm that returns true or false depending 
on if a target value was found in the array.

• Linear Search
1. Start from index 0
2. If the value at that index matches the target 

value then return true
3. Otherwise move to the next index
4. If the next index is outside of the array then 

return false 
5. Repeat Step 2

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12
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TRUE!



• Binary Search
1. Assume the Start Index is 0 and the End Index 

is Array.length - 1
2. Calculate the Middle Index from the Start and 

End Indices (middle = (start+end)/2)
3. If the Middle Index is outside of the array then 

return false
4. If the value at that index matches the target 

value then return true
5. If the value at the index is greater than the 

target value, then repeat Step 2 with the same 
Start Index to the Middle Index - 1

6. If the value at the index is less than the target 
value, then repeat Step 2 starting with the 
Middle Index + 1 and the same End Index

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12
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Which is more Efficient?



• Efficiency
– Producing desired results with little to no waste
– Well organized and prevents wasteful use of a resource

• Resources
– Time
– Space

• How do we measure efficiency?
– Algorithms do not require computers



• Complexity
– Classifies Computational Problems based on inherent difficulty
– Relates problems to each other
– Time and Space

• Asymptotic Analysis
– A way to describe a limiting behavior / function
– Limits in math are a value that a function approaches as the input approaches some value
– Time and Space Complexity



• Theoretical upper bound of an algorithm
• The “Worst Case” scenario
• Let f and g be functions defined on some subset of real numbers

𝒇𝒇 𝒏𝒏 = 𝑶𝑶 𝒈𝒈 𝒏𝒏 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏 ∈ ℝ as 𝒏𝒏 → ∞

• Let M be a constant that’s sufficiently large then we can say

𝒇𝒇 𝒏𝒏 ≤ 𝑴𝑴 𝒈𝒈 𝒏𝒏 𝒇𝒇𝒇𝒇𝒘𝒘 𝒂𝒂𝒂𝒂𝒂𝒂 𝒏𝒏 ≥ 𝒏𝒏𝟎𝟎



?



• Theoretical Model of a Computer
– Input is passed to the Computer
– Computer Computes
– Computer Outputs the result

• Time Complexity
– For a given amount of data (n) how many 

operations will the algorithm take to 
complete?

• Space Complexity
– For a given amount of data (n) how much 

space will the algorithm require to complete?

Theoretical Model of a Computer

INPUT Output
COMPUTING



• Big O Time Complexity
– For a given amount of data (n) AT MOST how 

many operations will the algorithm take to 
complete?

• Big O Space Complexity
– For a given amount of data (n) AT MOST how 

much space will the algorithm require to 
complete?

• Assuming “AT MOST” means that we are 
viewing the “Worst Case” scenario
– The case that would cause THE MOST 

operations to complete for time complexity
– The case that would require THE MOST space 

to complete for space complexity

Theoretical Model of a Computer

INPUT Output
COMPUTING



• We assign Big O function as a means to 
describe the time or space complexity 
given an input (n) as it approaches infinity

• Big O is an inequality
– Does not have to be exactly equal
– As long as the function being assigned (g(n)) is 

always larger than given function (f(n)), given a 
big enough constant (M), then we consider it 
to be Big O of the given function (f(n) = O(g(n))

Big O

𝒇𝒇 𝒏𝒏 = 𝑶𝑶 𝒈𝒈 𝒏𝒏 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏 ∈ ℝ as 𝒏𝒏 → ∞
such that,

𝒇𝒇 𝒏𝒏 ≤ 𝑴𝑴 𝒈𝒈 𝒏𝒏 𝒇𝒇𝒇𝒇𝒘𝒘 𝒂𝒂𝒂𝒂𝒂𝒂 𝒏𝒏 ≥ 𝒏𝒏𝟎𝟎



• Plotting these functions on a graph
– Amount of Data (n)
– Number of Operations (for time) or amount of 

space (for space)

• If we plot these functions on a graph, then 
a function (g(n)) is Big O of another 
function (f(n)) if the second function is 
below or equal to the first function’s curve

• Examples

Big O

(f(n) = n) = O(n)
(f(n) = n) = O(n2) 

(f(n) = n2+n+3) = O(n3)
(f(n) = n2) = O(n!)

(f(n) = n2) ≠ O(n)
(f(n) = n!) ≠ O(n2)
(f(n) = n) ≠ O(1)
(f(n) = 2n) ≠ O(n)



• Common Big O Complexities
– O(1) – Constant
– O(log(n)) – Logarithmic
– O(n) – Linear
– O(nlogn) – Linearithmic
– O(n2) – Quadratic
– O(2n) – Exponential “Bad”
– O(n!) – Factorial “Really Bad”

Big O



Applying this to the 
Examples



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13



• Linear Search
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worst case?
– Array is size 8 (n=8)
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• Linear Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)
– 8 checks to determine it was not in the array
– Assuming the array was size n then,

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13

Not FoundLinear Search
O(n)



• Binary Search
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• Binary Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)
– 3 checks to determine it was not in the array
– Assuming the array was size n then,
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• Binary Search
– How many operations will this take in the 

worst case?
– Array is size 8 (n=8)
– 3 checks to determine it was not in the array
– Assuming the array was size n then,

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Target Value: 13

Not Found

Binary Search
O(lg(n))

O(log2(n))



Which one is better?



• Binary Search has a better time complexity 
than Linear Search

• Given the same amounts of data (n) Binary 
Search requires less steps to complete

Example

f(n) = n

f(n) = lg(n)



• Any simple statement is going to be O(1)
• Loops and recursion is where complexity 

increases
– The number of times the loop runs or the 

number of times the recursive call is made
– Observe how the inputted data (n) is being 

processed
• The largest complexity can be considered 

the method’s Big O
– Largest complexity is the function that 

approaches infinity faster
– Doesn’t have to be exact but close
– An approximation that can be proven later

Example
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O(n) + O(1)

or just
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Complexity = O(1)’s + O(lg(n)) 
or just

O(lg(n))
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