

Programming Review

Part 06

Introductory

Data Structures

Problem

Problem

Waterfall Model

Problem

•Problem to Solve

–Keep track of Tacos that I like

•Create Solutions to Problems

•Software Development Models

–Agile, Waterfall, Iterative, V-Model, Spiral

•Waterfall Model

–Requirements

–Design

–Implement

–Verification

–Maintenance

Requirements

Design

Implementation

Verification

Maintenance

• Should be able to

– Add a Taco

– Remove a Taco by its Name

– Sort all by its Price

– Write to a Taco File

– Read from a Taco File

– Display all Taco information

• Clear and Simple Front End

Requirements

•Keep Track of important Taco Information

•Taco’s Information

–Name

–Location

–Price

Front EndBack End

Design

TacoManagerFE

-TacoManager: TacoManager
-keyboard: Scanner

+main(String): void
+printGreeting():void
+printChoices(): void
+addTaco(): void
+removeTaco(): void
+writeTacosToFile(): void
+readTacosFromFile(): void

10…*

TacoManager

-Tacos: Taco[]
+DEF_SIZE: int

+addTaco(String, String,
double):void
+removeTaco(String): void
+writeTacosToFile(String): void
+readTacosFromFile(String):void
+printTacos():void
-sortTacos():void
-init(int):void

Taco

-name : String
-location : String
-price : double

+toString() : String
+equals(Taco) : boolean

Front EndBack End

Design

TacoManagerFE

-TacoManager: TacoManager
-keyboard: Scanner

+main(String): void
+printGreeting():void
+printChoices(): void
+addTaco(): void
+removeTaco(): void
+writeTacosToFile(): void
+readTacosFromFile(): void

10…*

TacoManager

-Tacos: Taco[]
+DEF_SIZE: int

+addTaco(String, String,
double):void
+removeTaco(String): void
+writeTacosToFile(String): void
+readTacosFromFile(String):void
+printTacos():void
-sortTacos():void
-init(int):void

Taco

-name : String
-location : String
-price : double

+toString() : String
+equals(Taco) : boolean

//Taco File Format
//Header (Meta Data)
Taco_Amt:\t<<Taco Amount>>\n
//Body
<<Name>>\t<<Location>>\t<<Price>>\n

Front EndBack End

Design

TacoManagerFE

-TacoManager: TacoManager
-keyboard: Scanner

+main(String): void
+printGreeting():void
+printChoices(): void
+addTaco(): void
+removeTaco(): void
+writeTacosToFile(): void
+readTacosFromFile(): void

10…*

TacoManager

-Tacos: Taco[]
+DEF_SIZE: int

+addTaco(String, String,
double):void
+removeTaco(String): void
+writeTacosToFile(String): void
+readTacosFromFile(String):void
+printTacos():void
-sortTacos():void
-init(int):void

Taco

-name : String
-location : String
-price : double

+toString() : String
+equals(Taco) : boolean

//Taco File Format
//Header (Meta Data)
Taco_Amt:\t<<Taco Amount>>\n
//Body
<<Name>>\t<<Location>>\t<<Price>>\n

Front EndBack End

Design

TacoManagerFE

-TacoManager: TacoManager
-keyboard: Scanner

+main(String): void
+printGreeting():void
+printChoices(): void
+addTaco(): void
+removeTaco(): void
+writeTacosToFile(): void
+readTacosFromFile(): void

10…*

TacoManager

-Tacos: Taco[]
+DEF_SIZE: int

+addTaco(String, String,
double):void
+removeTaco(String): void
+writeTacosToFile(String): void
+readTacosFromFile(String):void
+printTacos():void
-sortTacos():void
-init(int):void

Taco

-name : String
-location : String
-price : double

+toString() : String
+equals(Taco) : boolean

//Taco File Format
//Header (Meta Data)
Taco_Amt:\t<<Taco Amount>>\n
//Body
<<Name>>\t<<Location>>\t<<Price>>\n

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

Example File

Object Array

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

•Arrays of Objects are Arrays of Memory
Addresses

•An Array is a Class Datatype in Java

•The Array’s identifier points to the contents
of the array

•The Array’s indices point to the contents of
the constructed and unconstructed Objects

•Default values for Object Arrays are NULL

–Meaning “Nothing” or “Empty”

Initializing the

Object Array

•Keep all constructed Objects to one side

–Toward the top

•No NULL elements in between constructed
Objects

•First NULL Element means everything after
that is also assumed NULL

–Everything below will also be NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

Add Method

Concept

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Adding

–Start from the first Index

–Find first NULL element

–Construct / Assign value to that location

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

Add Method

Implementation

Remove Method

Concept

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] NULL 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 512 40

Tacos[1] 324 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 324 40

Tacos[1] NULL 48

Tacos[2] NULL 54

… … …

Tacos[8] NULL 104

Tacos[9] NULL 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 256 40

Tacos[1] 512 48

Tacos[2] 324 54

… … …

Tacos[8] 4096 104

Tacos[9] 8192 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 512 40

Tacos[1] 324 48

Tacos[2] 1729 54

… … …

Tacos[8] 8192 104

Tacos[9] 8192 112

Taco Array
Structure

•Removing

–Start from the first Index

–Find the element to remove’s index

–If not found then return

–Then shift over by one (Tacos[i] = Tacos[i+1]

–Set last element to NULL

Identifier Contents Byte
Address

… … …

Tacos 40 28

… … …

Tacos[0] 512 40

Tacos[1] 324 48

Tacos[2] 1729 54

… … …

Tacos[8] 8192 104

Tacos[9] NULL 112

Taco Array
Structure

Remove Method

Implementation

File I/O Concept

Front EndBack End

Design

TacoManagerFE

-TacoManager: TacoManager
-keyboard: Scanner

+main(String): void
+printGreeting():void
+printChoices(): void
+addTaco(): void
+removeTaco(): void
+writeTacosToFile(): void
+readTacosFromFile(): void

10…*

TacoManager

-Tacos: Taco[]
+DEF_SIZE: int

+addTaco(String, String,
double):void
+removeTaco(String): void
+writeTacosToFile(String): void
+readTacosFromFile(String):void
+printTacos():void
-sortTacos():void
-init(int):void

Taco

-name : String
-location : String
-price : double

+toString() : String
+equals(Taco) : boolean

//Taco File Format
//Header (Meta Data)
Taco_Amt:\t<<Taco Amount>>\n
//Body
<<Name>>\t<<Location>>\t<<Price>>\n

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

Example File

TAB ‘\t’ Delimited

Example Implementation

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = NULL
splitLines = NULL
name = NULL
location = NULL
price = 0.0

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco\tLocation01\t0.99”
splitLines = NULL
name = NULL
location = NULL
price = 0.0

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = NULL
location = NULL
price = 0.0

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = NULL
location = NULL
price = 0.0

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = “Taco01”
location = NULL
price = 0.0

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = “Taco01”
location = “Location01”
price = 0.0

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = “Taco01”
location = “Location01”
price = 0.99

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Double.parseDouble(“0.99”)

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = “Taco01”
location = “Location01”
price = 0.99

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Taco

-name = “Taco01”
-location = “Location01”
-price = 0.99

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco01\tLocation01\t0.99”
splitLines = NULL

name = “Taco01”
location = “Location01”
price = 0.99

Index 0 1 2

Data “Taco01” “Location01” “0.99”

Taco

-name = “Taco01”
-location = “Location01”
-price = 0.99

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = NULL
splitLines = NULL

name = NULL
location = NULL
price = 0.0

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = NULL
splitLines = NULL

name = NULL
location = NULL
price = 0.0

Taco_Amt: 3
Taco01 Location01 0.99
Taco02 Location02 3.50
Taco03 Location03 5.00

…

while(fileScanner.hasNextLine())

{

 nextLine = fileScanner.nextLine();

 splitLines = nextLine.split(DELIM);

 if(splitLines.length == BODY_AMT)

 {

 String name = splitLines[0];

 String loc = splitLines[1];

 double price = Double.parseDouble(splitLines[2]);

 Taco addTaco = new Taco(name,loc,price);

 this.addTaco(addTaco);

 }

 …

}

File

TAB Delimited
Example
Detailed

Data
nextLine = “Taco02\tLocation02\t3.50”
splitLines = NULL

name = “Taco02”
location = “Location02”
price = 3.5

Index 0 1 2

Data “Taco02” “Location02” “3.50”

Taco

-name = “Taco02”
-location = “Location02”
-price = 3.5

Is this the best

Implementation?

•Did we use the correct data structure?

•Arrays Pros

–Random Access

–Better Data Locality

•Array’s Cons

–Not resizable

•If we do not know the exact size, then we
may

–Guess too small => Need create a newer
larger array and transfer the data.

–Guess too big => Lots of unused, wasted
space (Internal Fragmentation).

Problems with
the Array

Array Too Small

Array Too Big

0 1 2 3 4 5 6

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’

0 1 2 3 4 5 6 7 8 9 10 11 12

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘h’ - - - - -

Original Array

Newer Array

0 1 2 3 4 5 6 7 8 9 10 … 1024

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘h’ - - - … -

Unused Space

Programming Review

Part 06

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

