

Programming Review

Part 05

Exceptions

and

File I/O

Exceptions

• Provides a means to alert and handle exceptional run-time
events

• 3 Elements

–Creating Exceptions

–Using Exceptions

–Handling Exceptions

• Creating Exceptions

–“Extending” existing Exception

–Only create Constructors that sets the Exception Message

• Using Exceptions

–Method Definition uses “throws” to indicate which Exceptions
may occur

–Use the reserved word “throw” followed by a constructor
when the Exception occurs

Syntax for Creating an Exception

public class <<Exception identifier>> extends <<Existing Exception>>
{
 //Constructors
 public <<Exception identifier>>()
 {
 super(“<<Exception Message>>”);
 }
}

Example
public class DivideByZeroException extends Exception

{

 public DivideByZeroException()

 {

 super(“Divided by Zero Exception: Attempted to divide by Zero”);

 }

}

Exceptions

• Provides a means to alert and handle exceptional run-time
events

• 3 Elements

–Creating Exceptions

–Using Exceptions

–Handling Exceptions

• Creating Exceptions

–“Extending” existing Exception

–Only create Constructors that sets the Exception Message

• Using Exceptions

–Method Definition uses “throws” to indicate which Exceptions
may occur

–Use the reserved word “throw” followed by a constructor
when the Exception occurs

Syntax for Using an Exception
<<Method declaration>> throws <<Exception>>, …

{

 …

 throw new <<Exception Constructor>>;

}

Example
public void calculateValue() throws DivideByZeroException, UnknownOpException

{

 …

 if(denominator == 0)

 throw new DivideByZeroException();

 …

 if(opNotRecognized())

 throw new UnknownOpException();

}

Exceptions

• Provides a means to alert and handle exceptional run-time
events

• 3 Elements

–Creating Exceptions

–Using Exceptions

–Handling Exceptions

• Creating Exceptions

–“Extending” existing Exception

–Only create Constructors that sets the Exception Message

• Using Exceptions

–Method Definition uses “throws” to indicate which Exceptions
may occur

–Use the reserved word “throw” followed by a constructor
when the Exception occurs

Syntax for Handling an Exception
try

{

 <<Method(s) that throws exceptions>>

}

catch(<<Exception Type>> e)

{

 <<Handle the Exception>>

}

Example
try
{
 calculateValue();
}
catch(DivideByZeroException e)
{
 e.printStackTrace();
}
catch(UnknownOpException e)
{
 e.printStackTrace();
}
catch(Exception e)
{
 e.printStackTrace();
}

File I/O

• File Input and Output (I/O) allows a program to both read and
write files to the secondary storage

• File Systems

–Organize Data in Secondary Storage

•Directory – Tree Structure

•Folders – Containers for Files

•Root is the starting point

–Address (File Path)

•Absolute (C:\Folder\Folder\...)

•Relative (.\Folder or ..\Folder)

• Java Project’s Root Directory

–Contains a source (“SRC”) folder

–Contains the bytecode (“BIN”) folder

–Put files in a Project’s Root Directory

File System Example

root

C:\

Java\

D:\

Project\

src\

bin\

ReadingFile.java

ReadingFile.class

someFile.txt

• File Input and Output (I/O) allows a program to both read and
write files to the secondary storage

• File Systems

–Organize Data in Secondary Storage

•Directory – Tree Structure

•Folders – Containers for Files

•Root is the starting point

–Address (File Path)

•Absolute (C:\Folder\Folder\...)

•Relative (.\Folder or ..\Folder)

• Java Project’s Root Directory

–Contains a source (“SRC”) folder

–Contains the bytecode (“BIN”) folder

–Put files in a Project’s Root Directory

File System Example

root

C:\

Java\

D:\

Project\

src\

bin\

ReadingFile.java

ReadingFile.class

someFile.txt

Absolute Path
C:\Java\Project\someFile.txt

File I/O

• File Input and Output (I/O) allows a program to both read and
write files to the secondary storage

• File Systems

–Organize Data in Secondary Storage

•Directory – Tree Structure

•Folders – Containers for Files

•Root is the starting point

–Address (File Path)

•Absolute (C:\Folder\Folder\...)

•Relative (.\Folder or ..\Folder)

• Java Project’s Root Directory

–Contains a source (“SRC”) folder

–Contains the bytecode (“BIN”) folder

–Put files in a Project’s Root Directory

File System Example

root

C:\

Java\

D:\

Project\

src\

bin\

ReadingFile.java

ReadingFile.class

someFile.txt

Relative Path
.\someFile.txt

File I/O

•File Format

–How is information grouped

•Header Data

•Body Data

–How information is Separated

•Character / Byte length

•Delimiters / Separators

•Plain Text Files

–Readable Information

–Only Files used in this Course

•Binary Files

–Information stored in Bytes

Common File Formats
• Plain Text
–Readable words

–Separated by Spaces (single space(s), tabs, end line)

–<<word>><<space>…

• Tab Delimited
–Information separated by Tabs (‘\t’) and end lines (‘\n’)

–Spread Sheet
• Rows are end lines

• Columns are Tabs

–<<information>>\t<<information>>\t…<<information>>\n

• Comma Separated
–Information separated by Commas (‘,’) and end lines (‘\n’)

–Spread Sheet
• Rows are end lines

• Columns are Tabs

–<<information>>,<<information>>,…<<information>>\n

File I/O

•Streams and Buffers

–A Stream is a Sequence of Data

–Buffers provide space to temporarily hold
information

–Buffers holds Streamed information until
“flushed”

–Generally one direction

•System.out

–Standard System output Stream

•System.in

–Standard System input Stream

Stream and Buffer Example

File I/O

Memory

…

…

…

Program
…
System.out.println
(“Enter a number”);
int i = keyboard.nextInt();
…

Console

•Streams and Buffers

–A Stream is a Sequence of Data

–Buffers provide space to temporarily hold
information

–Buffers holds Streamed information until
“flushed”

–Generally one direction

•System.out

–Standard System output Stream

•System.in

–Standard System input Stream

Stream and Buffer Example

File I/O

Memory

…

BUFFER

…

BUFFER

…

Program
…
System.out.println
(“Enter a number”);
int i = keyboard.nextInt();
…

Console
Enter a number

Stream

•Streams and Buffers

–A Stream is a Sequence of Data

–Buffers provide space to temporarily hold
information

–Buffers holds Streamed information until
“flushed”

–Generally one direction

•System.out

–Standard System output Stream

•System.in

–Standard System input Stream

Stream and Buffer Example

File I/O

Memory

…

BUFFER

…

BUFFER

…

Program
…
System.out.println
(“Enter a number”);
int i = keyboard.nextInt();
…

Console
Enter a number
1066

• PrintWriter

–Class that creates an object that can write to files

–Need to “import java.io.*” to use the type

–Construction and use need to be enclosed in a try-catch block

• Similar to System.out

–Streams information to a file

–Useful Methods

•print(<<String value>>);

•println(<<String value>>);

• Always CLOSE the file’s Stream

–Resource Leak

–Ensures all information has been saved (“flushed”)

Syntax

//Print Writer Construction to Create / Overwrite a file

PrintWriter <<pwID>> =
new PrintWriter(
new FileOutputStream(
new File(<<path+filename>>)));

//Print Writer Construction to Append to Existing file

PrintWriter <<pwID>> =
new PrintWriter(
new FileOutputStream(
new File(<<path+filename>>),true));

//Printing a new line
<<pwID>>.println(<<String value>>);

//Printing to same line
<<pwID>>.print(<<String value>>);

//Closing the PrintWriter Stream DO NOT FORGET THIS!
<<pwID>>.close();

File Output

•Scanner

–Scans any stream (File I/O, System.in, Network,
Strings)

–Need to “import java.util.*” to use the type

–Construction and use, for files, need to be enclosed in
a try-catch block

–All previous methods can be utilized

•Files are read left to right THEN top to bottom

–Just like the console you cannot go backwards

•Always CLOSE the file’s Stream

–Resource Leak

–Ensures all information has been saved (“flushed”)

Syntax

//Scanner construction to read a file
Scanner <<fsID>> = new Scanner(new
File(<<path+filename>>));

//Reading and storing an entire line (until the end line
‘\n’)
<<strVar>> = <<fsID>>.nextLine();

//Reading and storing the String until the next space
(any kind)
<<strVar>> = <<fsID>>.next();

//Reading and storing to the next integer encountered
<<intVar>> = <<fsID>>.nextInt();

//Close the Scanner DO NOT FORGET THIS
<<fsID>>.close();

File Input

•Use the type Scanner

•Make sure the file’s path is correct

–Use relative paths

–Put files in Project’s root directory

•Know the File Format

–How is the information grouped

–How is the information separated

•Files are read left to right then top to bottom

–Cannot go backwards

•Always CLOSE the Scanner

•Reading a Plain Text File

1. Open the file

2. Read word by word (use method “.next()”)

3. Process the information

4. Repeat Step 2 until the end of the file has been reached

•Reading a Tab Delimited

1. Open the file

2. Read an entire line (use method “.nextLine()”)

3. Split the line using Tabs

4. Check if the information is valid

5. Process the information

6. Repeat Step 2 until the end of the file has been reached

Tips for
Reading Files

Plain Text

Example Concept

•Problem

–Find the number of times a given word appears in
a given file.

Plain Text
Example

File

Plain Text

Example Implementation

…

while(fileScanner.hasNext())

{

 String next = fileScanner.next();

 …

}

File

Plain Text
Example
Detailed

…

while(fileScanner.hasNext())

{

 String next = fileScanner.next();

 …

}

File

Plain Text
Example
Detailed

…

while(fileScanner.hasNext())

{

 String next = fileScanner.next();

 …

}

File

Plain Text
Example
Detailed

…

while(fileScanner.hasNext())

{

 String next = fileScanner.next();

 …

}

File

Plain Text
Example
Detailed

…

while(fileScanner.hasNext())

{

 String next = fileScanner.next();

 …

}

File

Plain Text
Example
Detailed

…

while(fileScanner.hasNext())

{

 String next = fileScanner.next();

 …

}

File

Plain Text
Example
Detailed

Programming Review

Part 05

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

