


Programming Review

Part 04



Behavior Structure

Problem 
Solving

Identify 
Data

Determine how 
Data changes

over time

Group related Data 
in Classes

Develop Methods 
related to the Data

Identify Class Relationships

Look for Related 
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures



<<type>> <<identifier>>;

Problem 
Solving

1. Identify your Data.

2. Determine how the data changes over time.

3. Consider structures for both behavior and 
data.

4. Group together (encapsulate) related 
information into Classes of Objects.

5. Develop functionality / methodologies that 
relates to the behavior of your Objects.

6. Further identify relationships between the 
Classes and optimize the structure.

7. Determine if there exists software patterns 
that may assist. 

Example

double j;

Behavior Structure

Identify 
Data

Determine how 
Data changes

over time

Group related Data 
in Classes

Develop Methods 
related to the Data

Identify Class Relationships

Look for Related 
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures



More Code Organization
More Object-Oriented Programming



Project

Classes

Methods



Problem 
Solving

6. Further identify relationships between the 
Classes and determine where design 
optimizations may occur. 

– Association = “Has A” 

• Contains some Thing else

– Inheritance = “Is A”

• Extends some Thing else

– Polymorphism = “Does an Action”

• Implements an Action in some way

– UML Class Diagrams = Structure

– UML Sequence Diagrams = Behavior

<<type>> <<identifier>>;

Example

double j;

Behavior Structure

Identify 
Data

Determine how 
Data changes

over time

Group related Data 
in Classes

Develop Methods 
related to the Data

Identify Class Relationships

Look for Related 
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures



UML Class Diagram

Design
Diagram

•UML Class Diagram
–Boxes => Structures (like Classes)

–Arrows => Relationships between structures

•Classes
–Name of the class

–Properties

–Methods

–“+” / “-” means scope is public or private

•Arrows
–Stick arrow is the Association or “has a”
•Numeric values indicate the number of instances

•Static variables and method are underlined
–Constants are all UPPER CASE

UML Class Diagram Arrows

<<Class Identifier>>

<<Properties>>
<<scope>> <<id>> : <<type>>

<<Methods>>
<<scope>> <<id>> (<<params>>) : <<return type>>

Association 
“has a”



Person

-name: String
-favNumber: int
+DEFAULT_NUM = 0

+getName(): String
+getFavoriteNumber():int
+setName(String): void
+setFavoriteNumber(int):void
+toString(): String
+equals(Person): boolean

Design
Diagram

PersonClassTester

+ keyboard: Scanner

+main(String[]): void
+printGreetings(): void
+test01(): void
+test02(): void
+test03():void

0…*



Cat

-name: String
-weight: double
-numberOfLegs: int

+getName(): String
+getWeight(): double
+getNumberOfLegs():int
+setName(): String
+setWeight(): double
+setNumberOfLegs():int
+toString(): String
+equals(Cat): boolean

Design
Diagram

CatClassTester

+ keyboard: Scanner

+main(String[]): void
+printGreetings(): void
+test01(): void
+test02(): void
+test03():void

0…*



Inheritance

•Establishes a relationship between two classes 
where properties and methods are absorbed 
and extended from one class into another.

•Similar to Biological Inheritance

•Used to create a more specific version of a given 
class

–Creates an “is a” relationship

–“This is a that with more details”

Syntax
//Class def
public class <<class identifier>> extends <<other class>>
{
 …
 public <<class identifier>>()
 {
  super();//Call other class’ default constructor
 }
}

Example
public class Employee extends Person
{
 protected int id;
 public Employee()
 {
  super();//Call to Person’s def constr
  this.id = 0;
 }
 …
 public boolean equals(Employee e)
 {
  return e != null && super.equals(e) && this.id == e.getID();
 }
}



Inheritance

•Reserved word “extends” is used to establish this 
relationship in the Class definition

•The scope operator “protected” is preferred for 
instance variables.

–“private” is never directly accessible outside of the 
class it was declared.

–“protected” provides “public” access for inherited 
classes, and “private” access for everything else.

–A scope in between “private” and “public”

•The reserved word “super” can be used to access 
methods and constructors from the parent class

–super() is used to call the parent’s constructors

–super.<<method>> is used to call the parent’s method

Syntax
//Class def
public class <<class identifier>> extends <<other class>>
{
 …
 public <<class identifier>>()
 {
  super();//Call other class’ default constructor
 }
}

Example
public class Employee extends Person
{
 protected int id;
 public Employee()
 {
  super();//Call to Person’s def constr
  this.id = 0;
 }
 …
 public boolean equals(Employee e)
 {
  return e != null && super.equals(e) && this.id == e.getID();
 }
}



Inheritance UML Class Diagram

• Arrows

– Block arrow is the Inheritance or “is a” relationship

• “#” means “protected” scope

• Following down the tree means more specific

– “Ugrad is a Student is a Person” == 

– “Ugrad is a more specific Student who has a level, 
and a Student is a more specific person with a 
Student ID” ==

– “Ugrad has the data level, ID (inherited from 
Student), name + favorite number (inherited from 
Person).

Design
Diagram

Person

#name: String
#favNumber: int
+DEFAULT_NUM = 0

+toString(): String
+equals(Person): Boolean

Student

#id: int

+toString(): String
+equals(Student): boolean

UGrad

#level: int

+toString(): String
+equals(UGrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Employee

#salary: double

+toString(): String
+equals(Employee): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean

PersonnelSystem

-people: Person[]

+addPerson(String, int): void
+addStudent(String, int, int): 
void
+addUgrad(String,int, int): void
…

PersonnelSystemFE

+ps: PersonnelSystem
+keyboard: Scanner

+main(String[]): void
+printGreetings(): void
+addPerson()
…

0…* 1



Related

Example



•Problem: We must keep track of important 
information about people at a University
•Different types include:
–Undergraduate Students
–Graduate Students
–Faculty
–Staff

•Undergraduate Information
–Name
–Student ID
–Level

•Graduate Information
–Name
–Student ID
–Advisor's Name

• Faculty Information
– Name

– Salary

– Courses

• Staff Information
– Name

– Salary

– Supervisor

• Should be able to:
– Add new people

– Remove people

– View all people in the system

• Clear and Easy-to-Use Frontend 

Personnel 
System



Design

UGrad

-name: String



Design

UGrad

-name: String
-id: int



Design

UGrad

-name: String
-id: int
-level: int



Design

UGrad

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean



Design

UGrad

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

Grad

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean



Design

UGrad

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

Grad

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean



Design

UGrad

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

Grad

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean

Student



Design

UGrad

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

Grad

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean

Student

-name: String
-id: int

+toString(): String
+equals(Student): boolean



Design

UGrad

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

Grad

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean

Student

-name: String
-id: int

+toString(): String
+equals(Student): boolean

extends



Design

UGrad

-level: int

+toString(): String
+equals(Ugrad): boolean

Grad

-advisor: String

+toString(): String
+equals(Grad): boolean

Student

-name: String
-id: int

+toString(): String
+equals(Student): boolean

extends



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#name: String
#id: int

+toString(): String
+equals(Student): boolean

extends



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#name: String
#id: int

+toString(): String
+equals(Student): boolean

extends

“#” means
Protected
Scope



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#name: String
#id: int

+toString(): String
+equals(Student): boolean

Employee

#name: String
#salary: double

+toString(): String
+equals(Student): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#name: String
#id: int

+toString(): String
+equals(Student): boolean

Employee

#name: String
#salary: double

+toString(): String
+equals(Student): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#name: String
#id: int

+toString(): String
+equals(Student): boolean

Employee

#name: String
#salary: double

+toString(): String
+equals(Employee): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean

Person

#name: String

+toString(): String
+equals(Person): Boolean



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#id: int

+toString(): String
+equals(Student): boolean

Employee

#salary: double

+toString(): String
+equals(Employee): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean

Person

#name: String

+toString(): String
+equals(Person): Boolean



REQUIREMENTS

UPDATE!!!



•Problem: We must keep track of important information 
about people at a University
•Different types include:
–Undergraduate Students
–Graduate Students
–Faculty
–Staff

•Undergraduate Information
–Name
–Student ID
–Level
–Favorite Number

•Graduate Information
–Name
–Student ID
–Advisor's Name
–Favorite Number

• Faculty Information
– Name
– Salary
– Courses
– Favorite Number

• Staff Information
– Name
– Salary
– Supervisor
– Favorite Number

• Should be able to:
– Add new people
– Remove people
– View all people in the system

• Clear and Easy-to-Use Frontend 

Personnel 
System



Design

UGrad

#level: int

+toString(): String
+equals(Ugrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Student

#id: int

+toString(): String
+equals(Student): boolean

Employee

#salary: double

+toString(): String
+equals(Employee): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean

Person

#name: String
#favNumber: int
+DEFAULT_NUM = 0

+toString(): String
+equals(Person): Boolean



Inheritance UML Class Diagram

• Arrows

– Block arrow is the Inheritance or “is a” relationship

• “#” means “protected” scope

• Following down the tree means more specific

– “Ugrad is a Student is a Person” == 

– “Ugrad is a more specific Student who has a level, 
and a Student is a more specific person with a 
Student ID” ==

– “Ugrad has the data level, ID (inherited from 
Student), name + favorite number (inherited from 
Person).

Design
Diagram

Person

#name: String
#favNumber: int
+DEFAULT_NUM = 0

+toString(): String
+equals(Person): Boolean

Student

#id: int

+toString(): String
+equals(Student): boolean

UGrad

#level: int

+toString(): String
+equals(UGrad): boolean

Grad

#advisor: String

+toString(): String
+equals(Grad): boolean

Employee

#salary: double

+toString(): String
+equals(Employee): boolean

Staff

#supervisor: String

+toString(): String
+equals(Staff): boolean

Faculty

#courses: String[]

+toString(): String
+equals(Faculty): 
boolean

PersonnelSystem

-people: Person[]

+addPerson(String, int): void
+addStudent(String, int, int): 
void
+addUgrad(String,int, int): void
…

PersonnelSystemFE

+ps: PersonnelSystem
+keyboard: Scanner

+main(String[]): void
+printGreetings(): void
+addPerson()
…

0…* 1



Example

Implementation



Polymorphism

• “One becomes many” / “One action done many ways”
– Similar to inheritance but focuses more on what an object 

does (its methods).

• “This is a that, which DOES something”
•One type’s methods could be implemented in several ways
• (Programming) Interfaces
–Similar in concept to User Interfaces (UI), but are not the same.
–Non-constructible datatype
–Only method declarations
–Provides “rules” for other programmers
–Provides a variable for classes that implement the interface
–Interface identifier must match the filename

• Classes “implement” interfaces
–Unlike inheritance, a class may implement any number of interfaces
–All methods in the interface MUST BE implemented or else there will 

be a syntax error

• Interfaces may “extend” other interfaces

Syntax
//Interface def
public interface <<interface identifier>>
{
 <<method definition>>;//Semi-colon after each method 
def
}
//Class implementing the interface
public class <<class identifier>> implements <<interface>>
{…

Example
public interface DrawableObject
{
 public void draw();
}
…
public class Rectangle implements DrawableObject
{
 …
 public void draw()
 {
  …
 }
}



Interface UML Class Diagram
• Boxes

– No section for data, just methods.

• Arrows
– Dashed Lines represent polymorphism
– “Is a this which DOES something”

• The <<Interface>> is sometimes added for 
clarity.

Design
Diagram

Shape
<<Interface>>

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void

BasicShape

# hSpace: int

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void
+ skipHSpaces(int): void

Rectangle
<<Interface>>

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)

BasicRectangle

# width: int
# height: int

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)
+drawShape(): void

HollowRectangle

+drawShape(): void
-drawHorizontalLine(): void
-drawMiddle(): void

CheckeredRectangle

+drawShape(): void

Triangle
<<Interface>>

+ getHeight(): int
+ setHeight(int)

BasicTriangle

# height: int

+ getHeight(): int
+ setHeight(int)
+drawShape(): void

HollowTriangle

+drawShape(): void

UpsideDownTriangle

+drawShape(): void

ShapeDrawer

-shapes: Shape[]

+ main(String[]): 
void

0…*



Related

Example



•Problem: We must create a program that can 
draw a variety of shapes in the console

•Draw Shapes in the console at set locations

–Horizontal Spacing (Hs)

–Vertical Spacing (Vs)

•Some Shapes mentioned were:

–Rectangle

–Triangle

–Maybe more?

• Shapes could be drawn in a variety of ways

– Filled

– Hollow

– Checkered Rectangle

– Horizontal Striped Rectangle

– Vertical Striped Rectangle

– Upside Down Triangle (USD Tri)

– Maybe More?

Shape 
Drawing 
Program

|
|
---***
---***

|
----*
----**
----***

Example 2x3 Rectangle Hs=3 Vs=2 Example 3x3 Triangle Hs=4 Vs=1

*****
*   *
*   * 
***** 
     

*
**
* * 
**** 
     

****
***
**
*     

* * *
 * *
* * *
 * *

*****

*****

* * * 
* * * 
* * * 
* * *   

*****
*****
***** 
***** 
     

*
**
*** 
**** 
     

Filled Hollow Checkered H/V Striped USD Tri More?

????????
????????
????????
????????

Vs

Hs



Shape 
Drawing 
Program

Shape
<<Interface>>

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void



Shape 
Drawing 
Program

Shape
<<Interface>>

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void

BasicShape

# hSpace: int

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void
+ skipHSpaces(int): void

Implements



Shape 
Drawing 
Program

Shape
<<Interface>>

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void

BasicShape

# hSpace: int

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void
+ skipHSpaces(int): void

Rectangle
<<Interface>>

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)

Extends



Shape 
Drawing 
Program

Shape
<<Interface>>

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void

BasicShape

# hSpace: int

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void
+ skipHSpaces(int): void

Rectangle
<<Interface>>

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)

Extends

BasicRectangle

# width: int
# height: int

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)
+drawShape(): void

Implements



Interface UML Class Diagram
• Boxes

– No section for data, just methods.

• Arrows
– Dashed Lines represent polymorphism
– “Is a this which DOES something”

• The <<Interface>> is sometimes added for 
clarity.

Design
Diagram

Shape
<<Interface>>

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void

BasicShape

# hSpace: int

+ setHSpace(int): void
+ getHSpace(): int
+ drawShape(): void
+ drawShapeAt(int): void
+ skipHSpaces(int): void

Rectangle
<<Interface>>

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)

BasicRectangle

# width: int
# height: int

+ getWidth(): int
+ setWidth(int): void
+ getHeight(): int
+ setHeight(int)
+drawShape(): void

HollowRectangle

+drawShape(): void
-drawHorizontalLine(): void
-drawMiddle(): void

CheckeredRectangle

+drawShape(): void

Triangle
<<Interface>>

+ getHeight(): int
+ setHeight(int)

BasicTriangle

# height: int

+ getHeight(): int
+ setHeight(int)
+drawShape(): void

HollowTriangle

+drawShape(): void

UpsideDownTriangle

+drawShape(): void

ShapeDrawer

-shapes: Shape[]

+ main(String[]): 
void

0…*



Example

Implementation



Programming Review

Part 04


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

