

Prosramming Revieu
Fart 44

=10] x|

Problem
Solving

S
Behavior Look for Related Structure

Software Patterns
(Behavior/Structure)

Develop Methods
related to the Data

Determine how

Data changes Start Identlfy
over time Data

Consider Group related Data
Structures in Classes

Identify Class Relationships

File Edit “iew Help

Problem

Solving

1. ldentify your Data. :
Behavior lookforRelated Structure

2. Determine how the data changes over time. Software Patterns
. . (Behavior/Structure)
3. Consider structures for both behavior and —
data. related to the Data
4. Group together (encapsulate) related ,
inf tion into Classes of Objects DELErMIne NOw |dentify
Intforma J - Data changes Start
5. Develop functionality / methodologies that over time Data
relates to the behavior of your Objects.
_ _]] Consider Group related Data
6. Further identify relationships between the Structures in Classes

Classes and optimize the structure.

7. Determine if there exists software patterns
that may assist.

Identify Class Relationships

More Code Uraanization

More Object-0Oriented Prosramming

Project

Classes
Methods

Problem

Solving

6. Further identify relationships between the :
. . Behavior LookforRelated Sgructure
Classes and determine where design Software Patterns

imizati Behavior/Struct
optimizations may ocCcur. (Behavior/Structure)
Develop Methods

— Association = ”Has A” related to the Data

e Contains some Thing else Determine how

|dentif
— Inheritance = “Is A” Data changes Start y
over time Data

* Extends some Thing else

Consider Group related Data
Structures in Classes

— Polymorphism = “Does an Action”

* Implements an Action in some way
] Identify Class Relationships
— UMIL Class Diagrams = Structure

— UML Sequence Diagrams = Behavior

Diagram

Design

* UML Class Diagram
—Boxes => Structures (like Classes)
—Arrows => Relationships between structures

*Classes
—Name of the class
—Properties
—Methods
—“+” [“-” means scope is public or private
* Arrows

—Stick arrow is the Association or “has a”
*Numeric values indicate the number of instances

e Static variables and method are underlined

UML Class Diagram

<<Class Identifier>>

<<Properties>>
<<scope>> <<id>> : <<type>>

<<Methods>>
<<scope>> <<id>> (<<params>>) : <<return type>>

—Constants are all UPPER CASE

UML Class Diagram Arrows

>

Association
“has a”

File Edit “iew Help

Design
Diagram

-name: String
-favNumber: int
+DEFAULT NUM =0

+getName(): String
+getFavoriteNumber():int
+setName(String): void
+setFavoriteNumber(int):void
+toString(): String
+equals(Person): boolean

PersonClassTester

+ keyboard: Scanner

+main(String[]): void

+printGreetings(): void
+test01(): void
+test02(): void
+test03():void

File Edit “iew Help

Design

Diagram

Cat

-name: String
-weight: double
-numberOflLegs: int

CatClassTester

+ keyboard: Scanner

+getName(): String 0. *
+getWeight(): double <€
+getNumberOfLegs():int
+setName(): String
+setWeight(): double
+setNumberOfLegs():int
+toString(): String

+equals(Cat): boolean

+main(String[]): void
+printGreetings(): void
+test01(): void
+test02(): void
+test03():void

Inheritance

*Establishes a relationship between two classes
where properties and methods are absorbed
and extended from one class into another.

*Similar to Biological Inheritance

*Used to create a more specific version of a given
class

—Creates an “is a” relationship
—“This is a that with more details”

Syntax

//Class def
public class <<class identifier>> extends <<other class>>

{

public <<class identifier>>()

{
¥

super();//Call other class’ default constructor

¥

Example
public class Employee extends Person

{

protected int id;
public Employee()
{

super();//Call to Person’s def constr
this.id = 0;
}

public boolean equals(Employee e)

{
}

return e != null && super.equals(e) && this.id == e.getID();

}

1
i

Im

=
]

Inheritance

e Reserved word “extends” is used to establish this
relationship in the Class definition

*The scope operator “protected” is preferred for
instance variables.

—“private” is never directly accessible outside of the
class it was declared.

—“protected” provides “public” access for inherited
classes, and “private” access for everything else.

—A scope in between “private” and “public”
*The reserved word “super” can be used to access
methods and constructors from the parent class

—super() is used to call the parent’s constructors
—super.<<method>> is used to call the parent’s method

Syntax

//Class def
public class <<class identifier>> extends <<other class>>

{

public <<class identifier>>()

{
¥

super();//Call other class’ default constructor

¥

Example
public class Employee extends Person

{

protected int id;
public Employee()
{

super();//Call to Person’s def constr
this.id = 0;
}

public boolean equals(Employee e)

{
}

return e != null && super.equals(e) && this.id == e.getID();

File

Edit Wiew Help

Design

Diagram

#name: String 0..*

#favNumber: int
+DEFAULT NUM =0 <

+toString(): String
+equals(Person): Boolean

PersonnelSystem

-people: Person(]

+addPerson(String, int): void
+addStudent(String, int, int):
void

+addUgrad(String,int, int): void

PersonnelSystemFE

+ps: PersonnelSystem
1 +keyboard: Scanner

+main(String[]): void
+printGreetings(): void
+addPerson()

A

T s
#id: int

+toString(): String
+equals(Student): boolean

4&

#level: int #advisor: String

+toString(): String
+equals(UGrad): boolean

+toString(): String

+equals(Grad): boolean

|
Employee

#salary: double

+toString(): String
+equals(Employee): boolean

A

| | | |
BT BT TR R

#supervisor: String #courses: String(]

+toString(): String
+equals(Faculty):
boolean

+toString(): String
+equals(Staff): boolean

Inheritance UML Class Diagram

e Arrows

— Block arrow is the Inheritance or “is a” relationship
* “#” means “protected” scope

* Following down the tree means more specific
— “Ugrad is a Student is a Person” ==

— “Ugrad is a more specific Student who has a level,
and a Student is a more specific person with a
Student ID”

— “Ugrad has the data level, ID (inherited from
Student), name + favorite number (inherited from
Person).

Keldateg
ExamPle

File Edit “iew Help

Personnel

System

* Problem: We must keep track of important * Faculty Information
information about people at a University — Name
 Different types include: — Salary
—Undergraduate Students — Courses
—Graduate Students
_Faculty Staff Information
—Staff — Name
* Undergraduate Information — Salary
—Name — Supervisor
_ftUdent D * Should be able to:
—Level
» Graduate Information — Add new people
—Name — Remove people
—Student ID — View all people in the system
—Advisor's Name Clear and Easy-to-Use Frontend

-name: String

-name: String
-id:int

-name: String
-id:int
-level: int

-name: String
-id:int
-level: int

+toString(): String
+equals(Ugrad): boolean

-name: String
-id:int
-level: int

+toString(): String
+equals(Ugrad): boolean

-name: String
-id:int
-advisor: String

+toString(): String
+equals(Grad): boolean

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean

-name: String
-id: int
-level: int

+toString(): String
+equals(Ugrad): boolean

-name: String
-id: int
-advisor: String

+toString(): String
+equals(Grad): boolean

-name: String
-id: int

+toString(): String
+equals(Student): boolean

-name: String -name: String
-id: int -id: int

-level: int -advisor: String
+toString(): String +toString(): String

+equals(Ugrad): boolean +equals(Grad): boolean

File Edit “iew Help

-name: String
-id: int

+toString(): String
+equals(Student): boolean

extends

-name: String -name: String
-id: int -id: int

-level: int -advisor: String
+toString(): String +toString(): String

+equals(Ugrad): boolean +equals(Grad): boolean

File Edit “iew Help

-name: String
-id: int

+toString(): String
+equals(Student): boolean

extends

-level: int

+toString(): String
+equals(Ugrad): boolean

-advisor: String

+toString(): String
+equals(Grad): boolean

File Edit “iew Help

#name: String
#id: int

+toString(): String
+equals(Student): boolean

extends

ttlevel: int

+toString(): String
+equals(Ugrad): boolean

#advisor: String

+toString(): String
+equals(Grad): boolean

File Edit “iew Help

#name: String

#id: int
”#” means +toString(): String
+equals(Student): boolean
Protected
Scope extends
#level: int #advisor: String
+toString(): String +toString(): String

+equals(Ugrad): boolean +equals(Grad): boolean

File Edit “iew Help

#name: String
#id: int

#name: String
#salary: double

+toString(): String

+equals(Student): boolean +toString(): String
+equals(Student): boolean

I | I |
T T e

#level: int #advisor: String #supervisor: String #courses: String|[]
+toString(): String +toString(): String +toString(): String +toStr:ngF(): S'If:'“-g
+equals(Ugrad): boolean +equals(Grad): boolean +equals(Staff): boolean +equals(Faculty):

boolean

File Edit “iew Help

#name: String
#id: int

#name: String
#salary: double

+toString(): String

+equals(Student): boolean +toString(): String
+equals(Student): boolean

I | I |
T T e

#level: int #advisor: String #supervisor: String #courses: String|[]
+toString(): String +toString(): String +toString(): String +toStr:ngF(): S'If:'“-g
+equals(Ugrad): boolean +equals(Grad): boolean +equals(Staff): boolean +equals(Faculty):

boolean

File Edit “iew Help

#name: String

+toString(): String
+equals(Person): Boolean

, A

|

#name: String
#id: int

#name: String
#salary: double

+toString(): String

+equals(Student): boolean +toString(): String
+equals(Employee): boolean

I | I |
T T e

#level: int #advisor: String #supervisor: String #courses: String|[]
+toString(): String +toString(): String +toString(): String +toStr:ngF(): S’Ic:m.g
+equals(Ugrad): boolean +equals(Grad): boolean +equals(Staff): boolean +equals(Faculty):

boolean

File Edit “iew Help

#name: String

+toString(): String
+equals(Person): Boolean

#id: int #salary: double
+toString(): String

+toString(): String
+equals(Student): boolean

+equals(Employee): boolean

| | I I
e e T

#level: int #advisor: String #supervisor: String #courses: String|[]
+toString(): String +toString(): String +toString(): String +toStr:ngF(): SH'“?
+equals(Ugrad): boolean +equals(Grad): boolean +equals(Staff): boolean +equals(Faculty):

boolean

REGQUIREMENTS
UPDATE! !}

File Edit “iew Help

Personnel

System

* Problem: We must keep track of important information
about people at a University
* Different types include:
—Undergraduate Students
—Graduate Students
—Faculty
—Staff
* Undergraduate Information
—Name
—Student ID
—Level
—Favorite Number
* Graduate Information
—Name
—Student ID
—Advisor's Name
—Favorite Number

Faculty Information
— Name

— Salary

— Courses

— Favorite Number

Staff Information
— Name

— Salary

— Supervisor

— Favorite Number

Should be able to:

— Add new people
— Remove people
— View all people in the system

Clear and Easy-to-Use Frontend

File Edit “iew Help

#name: String
#favNumber: int

+DEFAULT NUM =0

+toString(): String
+equals(Person): Boolean

| |
#id: int #salary: double

+toString(): String

+toString(): String
+equals(Student): boolean

+equals(Employee): boolean

| | I |
e e T

#level: int #advisor: String #supervisor: String #courses: String|[]
+toString(): String +toString(): String +toString(): String +toStr:ngF(): S’Ic:m.g
+equals(Ugrad): boolean +equals(Grad): boolean +equals(Staff): boolean +equals(Faculty):

boolean

File

Edit Wiew Help

Design

Diagram

#name: String 0..*

#favNumber: int
+DEFAULT NUM =0 <

+toString(): String
+equals(Person): Boolean

PersonnelSystem

-people: Person(]

+addPerson(String, int): void
+addStudent(String, int, int):
void

+addUgrad(String,int, int): void

PersonnelSystemFE

+ps: PersonnelSystem
1 +keyboard: Scanner

+main(String[]): void
+printGreetings(): void
+addPerson()

A

T s
#id: int

+toString(): String
+equals(Student): boolean

4&

#level: int #advisor: String

+toString(): String
+equals(UGrad): boolean

+toString(): String

+equals(Grad): boolean

|
Employee

#salary: double

+toString(): String
+equals(Employee): boolean

A

| | | |
BT BT TR R

#supervisor: String #courses: String(]

+toString(): String
+equals(Faculty):
boolean

+toString(): String
+equals(Staff): boolean

Inheritance UML Class Diagram

e Arrows

— Block arrow is the Inheritance or “is a” relationship
* “#” means “protected” scope

* Following down the tree means more specific
— “Ugrad is a Student is a Person” ==

— “Ugrad is a more specific Student who has a level,
and a Student is a more specific person with a
Student ID”

— “Ugrad has the data level, ID (inherited from
Student), name + favorite number (inherited from
Person).

Exampele
ImPlementdation

File

Edit Wiew Help

Polymorphism

* “One becomes many” / “One action done many ways”

— Similar to inheritance but focuses more on what an object
does (its methods).

* “This is a that, which DOES something”
* One type’s methods could be implemented in several ways

* (Programming) Interfaces
—Similar in concept to User Interfaces (Ul), but are not the same.
—Non-constructible datatype
—Only method declarations
—Provides “rules” for other programmers
—Provides a variable for classes that implement the interface
—Interface identifier must match the filename

* Classes “implement” interfaces

—Unlike inheritance, a class may implement any number of interfaces

—All methods in the interface MUST BE implemented or else there will
be a syntax error

* Interfaces may “extend” other interfaces

SyntaXx

//Interface def
public interface <<interface identifier>>

{

def
}

//Class implementing the interface
public class <<class identifier>> implements <<interface>>

{.

<<method definition>>;//Semi-colon after each method

Example
public interface DrawableObject

{
¥

public void draw();

public class Rectangle implements DrawableObject

{

public void draw()

{
}

File

Edit Wiew Help

Design

Diagram

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void

-

Triangle
<<Interface>>

+ getHeight(): int
+ setHeight(int)
A

(
[
CESAELTHE

height: int

Shape | Interface UML Class Diagram
oo T
0..

%

-shapes: Shape]]

— No section for data, just methods.
+ main(String[]):

void e Arrows

— Dashed Lines represent polymorphism
— “Is a this which DOES something”

e The <<Interface>> is sometimes added for

BasicShape

hSpace: int

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void
+ skipHSpaces(int): void

+ getHeight(): int
+ setHeight(int)
+drawShape(): void

i

UpsideDownTriangle

+drawShape(): void

HollowTriangle

+drawShape(): void

clarity.
Rectangle
<<Interface>>

+ getWidth(): int HollowRectangle

+ setWidth(int): void
+ getHeight(): int

+ setHeight(int) +drawShape(): void
é -drawHorizontalLine(): void
: -drawMiddle(): void
|
BasicRectangle

width: int CheckeredRectangle

height: int

+ setWidth(int): void +drawShape(): void

+ getHeight(): int
+ setHeight(int)
+drawShape(): void

Keldateg
ExamPle

Shape

Drawing

Program

*Problem: We must create a program that can
draw a variety of shapes in the console

*Draw Shapes in the console at set locations
—Horizontal Spacing (Hs)
—Vertical Spacing (Vs)
*Some Shapes mentioned were:
—Rectangle
—Triangle
—Maybe more?

e Shapes could be drawn in a variety of ways
— Filled
— Hollow
— Checkered Rectangle
— Horizontal Striped Rectangle
— Vertical Striped Rectangle
— Upside Down Triangle (USD Tri)
— Maybe More?

Example 2x3 Rectangle Hs=3 Vs=2 Example 3x3 Triangle Hs=4 Vs=1 Filled Hollow Checkered | H/V Striped | USD Tri More?

| | *kkokok | ok fokokokk | ok * k% fokokokk |k ok ok | okokokk PPPPPRR?
|} Vs ——— ok *okokkk | ok * * | ko * ok * ok ok | kokx PPPPPRR?
o _kkX - kX *odkokkk | kokok * * | % ok * ok % fkokokkk |k ok ok | okk PPPPPRR?
- - kokk — o kKK *okokkk | kokokox sokokkok | kokokox * ok * ok x|k PPPPPPP?
—

Hs

Shape

Drawing
Program

Shape
<<Interface>>

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void

File Edit “iew Help

Shape

Drawing
Program

Shape
<<Interface>>

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void

Implements

BasicShape

hSpace: int

———————>

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void
+ skipHSpaces(int): void

File Edit “iew Help

Shape

Drawing
Program

Shape
<<Interface>>

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void
A JaN

Extends

BasicShape

+ setHSpace(int): void <<Interface>>

+ getHSpace(): int + getWidth(): int
+ drawShape(): void + setWidth(int): void
+ drawShapeAt(int): void + getHeight(): int

+ skipHSpaces(int): void + setHeight(int)

File Edit “iew Help

Shape

Drawing
Program

Shape
<<Interface>>

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void

A A

hSpace: int <<Interface>>

+ getWidth(): int
+ setWidth(int): void

+ setHSpace(int): void

+ getHSpace(): int) -

+ drawShape(): void + getHeight(): int
+ setHeight(int)

e VBRI vohe
BasicRectangle
+ skipHSpaces[({nt): void t :

| I t I # width: int
mplements: # height: int
: __________ + getWidth(): int

+ setWidth(int): void
+ getHeight(): int

+ setHeight(int)
+drawShape(): void

Extends

File

Edit Wiew Help

Design

Diagram

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void

-

Triangle
<<Interface>>

+ getHeight(): int
+ setHeight(int)
A

(
[
CESAELTHE

height: int

Shape | Interface UML Class Diagram
oo T
0..

%

-shapes: Shape]]

— No section for data, just methods.
+ main(String[]):

void e Arrows

— Dashed Lines represent polymorphism
— “Is a this which DOES something”

e The <<Interface>> is sometimes added for

BasicShape

hSpace: int

+ setHSpace(int): void

+ getHSpace(): int

+ drawShape(): void

+ drawShapeAt(int): void
+ skipHSpaces(int): void

+ getHeight(): int
+ setHeight(int)
+drawShape(): void

i

UpsideDownTriangle

+drawShape(): void

HollowTriangle

+drawShape(): void

clarity.
Rectangle
<<Interface>>

+ getWidth(): int HollowRectangle

+ setWidth(int): void
+ getHeight(): int

+ setHeight(int) +drawShape(): void
é -drawHorizontalLine(): void
: -drawMiddle(): void
|
BasicRectangle

width: int CheckeredRectangle

height: int

+ setWidth(int): void +drawShape(): void

+ getHeight(): int
+ setHeight(int)
+drawShape(): void

Exampele
ImPlementdation

Prosramming Revieu
Fart 44

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

