

Prosramming Revieu
Fart B3

=10] x|

Problem
Solving

S
Behavior Look for Related Structure

Software Patterns
(Behavior/Structure)

Develop Methods
related to the Data

Determine how

Data changes Start Identlfy
over time Data

Consider Group related Data
Structures in Classes

Identify Class Relationships

File Edit “iew Help

Problem

Solving

1. ldentify your Data. :
Behavior lookforRelated Structure

2. Determine how the data changes over time. Software Patterns
. . (Behavior/Structure)
3. Consider structures for both behavior and —
data. related to the Data
4. Group together (encapsulate) related ,
inf tion into Classes of Objects DELErMIne NOw |dentify
Intforma J - Data changes Start
5. Develop functionality / methodologies that over time Data
relates to the behavior of your Objects.
_ _]] Consider Group related Data
6. Further identify relationships between the Structures in Classes

Classes and optimize the structure.

7. Determine if there exists software patterns
that may assist.

Identify Class Relationships

Code 0Organization
Me thods and ObJiect-0riented Prosramming

Project

Classes
Methods

Project
Classes
Methods

dVad

8 Package Explorer

=
= CSCE145 HelloWorld
s By JRE System Library
v i src
v i (default package)
|11] HelloWorld.javal

= B [J] HelloWordjava
12 /*
* Written by Dr. 33 Shepherd

* Multi-line comment ignored by the compiler

e §

Ly IV, R A T 8

*/

//5ingle line comment also ignored by the compiler
import java.util.Scanner;//Includes the datatype "Scanner” for input
public class HellolWorld //Class

{

//Inside the Body of the Class

1

- }

¥

e public static woid main(String[] args) //Method

//Inside the Body of the Method.

//The main method is the “entry point™ of the software,

{for where the computer begins running each statement.
System.owut.println("Hello World!™};//Outputs "Hellc World™ to the conscle
System.out.println("I can add numbers and such. So... Gimme NUMBERS!!!™);
{//Creates a Scanner for input called “keyboard”

Scanner keyboard = new Scanner(System.in);

{/Two whole number (integer) wvalues are inputied from console wvia the Scanner
/fand stored inte two variables "waluel™ and "walue2™

int valuel = keyboard.nextInt();

int wvalue2 = keyboard.nextInt();

//Values are added together and stored in another wvariable called “result”
int result = valuel + valueZ;

//The values are each part are putputted to the console.
System.out.println("The results of "+valueld+” + "4value2+™ is "+result);

File Edit “iew Help

Syntax for Declaring Dynamic Methods

<<scope>> <<return type>> <<identifier>> (<<parameter(s)>>, ..)

!
<<Body of the Method>>

}

*Groups functionality into a “callable” structure Example

e “\erbs” public boolean isValid(int index)
*Create methods based on singular verbs {

: : : return index >= 0 && index <a.length;
*Dynamically created during runtime

* Methods in Java must be declared within a Class

File Edit “iew Help

Scope and

Return Type

*Scope indicates where the method can be called
—Public => called outside of the class.
—Private => only called inside of the class.

*Return Type allows methods to pass back values
outside of the method

*The “void” return type indicates the method
returns nothing

*Any non-void type must return that type of
value

—Must use the word “return” followed by the value
—Return immediately exits the method
—All paths must return a value

Example

public int getValueFrom(int index)
{
if(!isValid(index))
return -1;
else
return a[index];

}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length;

File Edit “iew Help

ldentifiers and

Parameters
*ldentifiers are the name given to the method Example
_ public void printMax(int[] a)
—Same rules as Variables {
—Good programming practice to “Camel Case” if(a == null)//Does “a” exist?
these as well return;//If not, then leave

int max = a[@];//Assume first value is max
for(int i=1;i<a.length;i++)
max = getMax(max,a[i]);

—Good programming practice to give method
“verb-like” names

*Parameters allow outside information to be System.out.println(“Max Value is ”+max);
passed into the method b | | ,
_ private int getMax(int vall, int val2)
—Act as variables for these external values {
—A parameter’s scope is only within the body of the if(vall >= val2)
method return vall;

else

—Every parameter needs to be declared (type and return val2;

on»”

id) and separated using a comma “. }

File Edit “iew Help

* Using or “calling” methods depends on where it is
being called

*|nside the class where it was defined
—Use the identifier followed by the parameters

—For dynamic methods it is good practice to use the
reserved word “this”

e Outside the class where it was defined

—An instance of the class (an Object) must be
constructed and if not NullPointerException

—Use the instance followed by a dot “” followed by the
identifier and parameters

* Methods are “pushed” onto a structure in memory
called a “Call Stack”

Syntax for Internal Call

this.<<method identifier>>(<<parameters>>);

Syntax for External Call

<<object identifier>>.<<method identifier>>(<<parameters>>);

Example for External

public static void main(String [] args)

{

AClass aClass = new aClass();
aClass.callPublicMethod();//External call

File Edit “iew Help

Example Call Stack in Memory

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)
{
if(l!isvalid(index))
return -1;
else
return a[index];

}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length; Main Method
}

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

»public int getValueFrom(int index)
{
if(l!isvalid(index))
return -1;
else
return a[index];

}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length;

}

Call Stack in Memory

getValueFrom(4)

Main Method

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)

‘if(lisValid(index))
return -1;
else

return a[index];

}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length;

}

Call Stack in Memory

getValueFrom(4)

Main Method

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)

4115(lisValid(index))
return 5
else

return al[in

}
»pr‘ivate boolean isValid(int i)
{
return 1 >= 0 && 1 <a.length;
}

Call Stack in Memory

getValueFrom(4)

Main Method

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)

4115(lisValid(index))
return 5
else

return al[in

}

private boolean isValid(int 1)

1
»\r‘etur‘n i >= 0 & & 1 <a.length
h

l

'

Call Stack in Memory

isValid(4)

getValueFrom(4)
Main Method

Tt m
Iruc

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)

4115(lisValid(index))
return 5
else

return al[in

}

private boolean isValid(int 1)

1
»\r‘etur‘n i >= 0 & & 1 <a.length
h

l

'

Call Stack in Memory

isValid(4)

getValueFrom(4)
Main Method

Tt m
Iruc

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)

I True 5= False
4if(’! isValid(index))

return -1;
else
return a[index];

}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length;

}

Call Stack in Memory

getValueFrom(4)

Main Method

File Edit “iew Help

Example

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)
{ I True 5= False
if(lisvalid(index))
return -1;
else

»r‘etur‘n alindex];
}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length;

}

Call Stack in Memory

getValueFrom(4)

Main Method

File Edit “iew Help

Example Call Stack in Memory

//Assume this 1s called from the Main
/ /Method

public int getValueFrom(int index)
{
if(l!isvalid(index))
return -1;
else
return a[index];

}

private boolean isValid(int 1)

{

return 1 >= 0 && 1 <a.length; Main Method
}

File Edit “iew Help

Static

Methods

Syntax for Declaring Static Methods

<<scope>> static <<return type>> <<identifier>> (<<parameter(s)>>, ..)

!
<<Body of the Method>>

}

e Statically created in memory at Compilation Time. Example

—Does not depend on an instance of an object
oL P J public static void printError(String msg)
—Sometimes called “Class Methods”

* The reserved word “this” cannot be used {
« Static methods can call static methods System.out.println(“Error! ”+msg);
—Main method can directly call other static methods }

* Dynamic methods CAN call Static methods Directly
e Static methods CANNOT call Dynamic methods Directly

Problem

Solving

4. Group together (encapsulate) related
information into Classes of Objects. Behavior lookforRelated Structure

- . . . Software Patterns
— How is information related and is it possible to group (Behavior/Structure)
[] [] [] [] . _ ?
information in its own unique data-type- Develop Methods

— In Object Orient Languages, Classes a structures related to the Data
where data and functionality can be grouped
together to create instances we call Objects.

Determine how

— Object Orignted Programming (OOP) T Start |dentify
— Encapsulation over time Data
5. Develop functionality / methodologies that
relates to the behavior of your Objects. Consider Group related Data
— Objects can be viewed as nouns that perform actions Structures in Classes
or verbs.
— Functions or methods are typically grouped inside of Identify Class Relationships

classes to perform actions related to the object’s
data.

Classes and

Objects

7 Steps for Creating and Using a Class

1. Declare the Class Behavior lookforRelated Sgructure
Software Patterns
2. Declare the Data (Behavior/Structure)
— Instance Variables (make their scope “private”) Develop Methods
— Class Constants (make their scope “public” and “static”) related to the Data
3. Constructors
— Default Determine how Identif
— Parameterized Data changes Start Y

4. Accessors for Every Instance Variable over time Data

5. Mutators for Every Instance Variable
— Check for valid values

6. Other useful methods

— toString() Identify Class Relationships
— equals(value)

7. Use it!

Consider Group related Data
Structures in Classes

File Edit “iew Help

Classes and

Objects

eDeclare the Class
*The identifier becomes a Type
eClass identifier’s have the same rules as

Variables and Methods

—Good programming practice to “Camel Case” these as
well, but always Uppercase the first Letter

—Good programming practice to give method “noun-
like” names

*|In Java the class’ name must match the file
name

*The scope of a class is usually public

Syntax

<<scope>> class <<class identifier>>

{

<<Body of the Class>>

Example

public class Person

{

File Edit “iew Help

Classes and

Objects

*Declare the Data
*The properties or attributes of a Class of Objects.
*The “Data” part of the class

*|nstance Variables describes a specific instance of
that class (an object)

—Scope should be “private”
—Encapsulation

e Class Constants describe immutable values shared
by all instances of a class.

—Scope should be “public” and it should be “static”
(and “final” to make it constant)

Syntax
//Instance Variable
private <<type>> <<identifier>>;
//Class Constant
public static final <<type>> <<identifier>>;

Example
public class Person
{
private String name;
private int favNumber;
public static final int DEFAULT_NUM = 0;

1
i

Im

=
]

Classes and

Objects

* Constructor are used to dynamically “Construct” an

instance of a class, called an “Object”, in memory during
runtime.

* Replicates all code found in a Class into memory
—The reserved word “new” precedes a constructor
—Dynamically allocates all properties and methods

* Special kinds of Methods
—Does not have a return type
—ldentifier must match the Class’ identifier

* Default Constructor sets all properties to valid, default
values

* Parameterized Constructor sets all properties to given, valid
parameter values

—Must error check (Mutators)

Syntax for Default Constructor
public <<Class Id>>()

{
¥

//Body of default constructor

Syntax for Parameterized Constructor
public <<Class Id>>(<<parameter>>, ..)

{

//Body of param constructor

}
public Person()
{
this.name = “none yet”;
this.favNumber = DEFAULT_NUM;
}

public Person(String aName, int aNum)

{
¥

//Call mutators

File Edit “iew Help

Classes and

Objects

* Accessors gives access to properties outside of the
instance

—The Private Scope prevents directly accessing
properties like instance variables

* Create an accessor for every instance variable
*VVery formulaic

—Method’s return type matches the variable’s return
type

—Method’s identifier starts with “get” followed by the
variables identifier

—Return the property

—*The reserved word “this” is optional but good
programming practice®

Syntax
public <<return type>> get<<identifier>>()

{

return this.<<identifier>>;

}

Example
public String getName()
{ return this.name;
gublic int getFavoriteNumber()
{ return this.favNumber;
}

File

Edit Wiew Help

Classes and

Objects

* Mutators gives ability to modify (mutate) the value of an Object’s
property

—Checks for errors
* Create a mutator for every instance variable
 Very formulaic

—Return type is always “void”

—The method’s identifier is “set” followed by the variable’s
identifier

—Has a parameter that matches the type of the variable

—Sets the value of the instance variable only if the parameter is
valid

* Object type parameters should verify if they exist
—Memory address is not null

Syntax
public void set<<identifier>>(<<parameter>>)
if(<<parameter is a valid value>>)
this.<<instance variable>> = <<parameter>>;
else
this.<<instance variable>> = <<default value>>;
Example
public void setName(String aName)
{
if(aName == null)
aName = “none yet”;
else
this.name = aName;
}
public void setFavoriteNumber(int aNum)
{

this.favNumber = aNum;

}

File

Edit Wiew Help

Classes and

Objects

* Specific actions (“verbs”) that the Class of objects can do
* Two Common Useful Methods
—toString()
—equals(<<value>>)
* The toString() method
—Return a String value with all properties concatenated together
—Useful for debugging
* The equals method

—Verifies if the properties of one object is equal to another
object’s properties

—Use this instead of “==" for Object types

—“==" should only be used when checking the memory address
of an object type

*When checking if the object is “null”

Syntax
public String toString()
{
return <<properties concatenated together>>;
}
public boolean equals(<<other instance (0i)>>)
{
return <<oi>> != null &&
this.<<instance variable>> == <<o0i>>.<<accessor>> &&
this.<<instance variable>>.equals(<<oi>>.<<accessor>>) && ..
}
Example
public String toString()
{
return “Name: ”+this.name+
“ Favorite Number: ”+this.faveNumber;
}
public boolean equals(Person aPerson)
{
return aPerson != null &&
this.name.equals(aPerson.getName()) &&
this.favNumber == aPerson.getFavoriteNumber();

File Edit “iew Help

Classes and

Objects

* To use a Class to create an instance, called an Object, Syntax

first declare it //Declaring

<<class type>> <<identifier>>;

//Constructing a new instance

—Just like any other variable <<identifier>> = new <<class type’s constructor>>;

—Default value is “null”

—The type (name of the class) followed by an identifier

—Declaring it does not create the object, it just creates
room for a reference

*Reference (memory address) points to the contents Example
- To construct the instance use the reserved word “new” | Pe€rson pl;
followed by a call to the Class’ constructor pl = new Person();
—This should be assigned to the declared variable Person p2 = new Person(“JJ1”,1729);

*This is the only way to create a new instance

—The assignment operator DOES NOT clone instances

File Edit “iew Help

Memory

and Objects

*Objects in memory are separated into 2
elements

—Reference (memory address)
—Contents (properties and methods)

*The identifiers for Objects ONLY contain a
memory address

—“Null” is a special memory address meaning
the object has not been constructed

Example

Person pl;

0l = new Person();

Person p2 = new Person(“JJ”,1729);
Person p3 = new Person();

(pl == p3);//False
poolean b2 = (pl.equals(p3));//True
pl = p2;

pl.setName(“ASDF”);

String name = p2.getName();// “ASDF”

noolean b

File Edit “iew Help

Memory

and Objects

“__u

* The assignment operator (“=") does not create new Example
instances of an object.

Person pl;
—Only the word “new” does

pl = new Person();
—Multiple identifiers can reference the same object OF

(Shallow Copy) Person p2 = new Person(“JJ”,1729);
—Cloning Objects require a new object created via a Person p3 = new Person();
constructor or a clone method (Deep Copy) hoolean b = (pl == p3);//False
.-r:r;t th_e_ir Egsf:;ttshe memory address for objects, but poolean b2 = (pl.equals(p3));//True
—Should only be used when referring to the object’s pl = p2;
memory address, such as checking for null pl.setName(“ASDF”);
—Equals method should be used to check contents St ring name = p2. getName() 5// “ASDF”

* Unreachable objects are removed in Java

Prosramming Revieu
Fart B3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

