


Prosramming Revieu
Fart uc




Frocegquradal Prosramming




=10] x|

Problem
Solving

S
Behavior Look for Related Structure

Software Patterns
(Behavior/Structure)

Develop Methods
related to the Data

Determine how

Data changes Start Identlfy
over time Data

Consider Group related Data
Structures in Classes

Identify Class Relationships




File Edit “iew Help

Problem

Solving

1. ldentify your Data. :
Behavior  lookforRelated  Structure

2. Determine how the data changes over time. Software Patterns
. . (Behavior/Structure)
3. Consider structures for both behavior and —
data. related to the Data
4. Group together (encapsulate) related ,
inf tion into Classes of Objects DELErMIne NOw |dentify
Intforma J - Data changes Start
5. Develop functionality / methodologies that over time Data
relates to the behavior of your Objects.
_ _ ] ] Consider Group related Data
6. Further identify relationships between the Structures in Classes

Classes and optimize the structure.

7. Determine if there exists software patterns
that may assist.

Identify Class Relationships




Problem

Solving

1. Identify your data.

, , _ Behavior  lookforRelated  'Stryucture
—  What information do we need to keep in our Software Patterns

5 (Behavior/Structure)
memory:

Develop Methods
— What information is variable and what related to the Data

information is constant?

Determine how Identify
Data changes Start

—  Whatis the type of data? over time DEI:

— How do we represent the data?

. Numeric? Whole or Decimal?
Ch ters? Consider Group related Data
. aracters:

e  Words/Strings?
*  Collections? Other Structures? Identify Class Relationships

—  Look for the Nouns

Structures in Classes




File Edit “iew Help

\VETEE] o] [

*Stores changeable information Syntax
*Containers for Data <<type>> <<identifier>>;
*Declaring

—Creates a Variable

—(Data) Type

—ldentifier
*Spoken: Example

—“Reserve space in memory for this type called this double 7j;

identifier” or
—“Find some space to store this type of data”




File Edit “iew Help

Variables

Types

*Type corresponds to bytes in memory
*Only use the type when declaring
*Programming Languages are either
—Strongly Typed
—Weakly Typed
*Primitive Types
*Object Types
—Reference points to

—Contents

*Bold are the most commonly used primitive
data types in this course

Primitive Types

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to
2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7
decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15
decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values




Variables

Types

Example Memory Concept

: : . Contents Byte
int 1

double j;

char o; i 0 53
j 0.0 32
o) “\u0000’ 40

Future Variable

Physical Memory Concept

Byte 28 29 30 31

Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




File Edit “iew Help

Variable

ldentifiers

*Gives the variable a “name” Good Examples
e Use the name to retrieve and store information int testo1;

* Case sensitive
—int test, int TEST, int tEST would be 3 different identifiers

e “Camel Casing” common practice used for

double largeValues;
boolean inClass;

identifiers

*|dentifiers cannot

—Start with a Digit Bad Examples

—Have Spaces int 1Test;//Started with a digit
—Match a reserved word double big vals;//Used a space

* Identifiers should avoid boolean class;//Class is a reserved wonrd

—Special Characters
—Confusing names




File Edit “iew Help

Assignment

Operator

*The equals symbol “=" is the Assignment Operator Syntax

Stores values found on the right hand side (RHS) of

the operator into the identifier found on the left , .
hand side (LHS) <<ldentifier>> = <<value>>;

* Assignments are valid if the type matches are is at
least compatible

—Primitive types can be stored in other primitive types as
long the type’s byte amount is less than or equal to value

being stored . Examples
—Otherwise “type casting” is required 1 = 4;
—Type casting does not round it cuts off everything pastthe | J = 22.3;
decimal point “ 0 = ‘h’;
* Spoken: i = (int)j;//Type cast from double to int

—“Store this value in this container” . . .
//Value stored in “1i” is 22




File Edit “iew Help

Assignment

Operator

*Declare and assigning initial values
—Good programming practice
—Shortens two statements into one
—Types are not still used after the declaration

Future Variable

Example

int 1 = 4;
double j = 22.3;
char o = ‘h’;

i = (int)j;

Memory Concept

28




File Edit “iew Help

Assignment
Operator

*Declare and assigning initial values Memory Concept

~Good programming practice __identifier | _ Contents _|_Byte Address

—Shortens two statements into one

—Types are not still used after the declaration
i 0 28

Future Variable

Example

myint i| = 4;
double j = 22.3;
char o = ‘h’;

i = (int)j;




File Edit “iew Help

Assignment
Operator

*Declare and assigning initial values Memory Concept

~Good programming practice __identifier | _ Contents _|_Byte Address

—Shortens two statements into one

—Types are not still used after the declaration
i 4 28

Future Variable

Example
mint [1 = 4]
double j = 22.3;
char o = ‘h’;

i = (int)j;




File Edit “iew Help

Assignment
Operator

*Declare and assigning initial values Memory Concept

~Good programming practice __identifier | _ Contents _|_Byte Address

—Shortens two statements into one

—Types are not still used after the declaration

| 4 28
j 0.0 32
E Xanm D ]. e Future Variable - 40

int 1 = 4;
#|double J|= 22.3;
char o = ‘h’;

i = (int)j;




File Edit “iew Help

Assignment
Operator

*Declare and assigning initial values Memory Concept

~Good programming practice __identifier | _ Contents _|_Byte Address

—Shortens two statements into one

—Types are not still used after the declaration

| 4 28
j 22.3 32
E Xanm D ]. e Future Variable - 40

int 1 = 4;
=>double |[§ = 22.3;
char o = ‘h’;

i = (int)j;




File Edit “iew Help

Assignment

Operator

*Declare and assigning initial values
—Good programming practice
—Shortens two statements into one
—Types are not still used after the declaration

J

Example

int 1 = 4;
double j = 22.3;
=char 0 = ‘h’}

1 = (int)j;

0)

Memory Concept

22.3

lhl

Future Variable _

28

32

40




File Edit “iew Help

Assignment
Operator

*Declare and assigning initial values Memory Concept

~Good programming practice __identifier | _ Contents _|_Byte Address

—Shortens two statements into one

—Types are not still used after the declaration

i 22 28
j 22.3 32
Example ) " 10

int 1 = 4;

double j = 22.3;

char o = ‘h’;

m)i = (int)j;|//Typecast

Future Variable




File Edit “iew Help

Constants

*Establishes a value that cannot change Syntax

*Great for avoiding “magic numbers”

. . public static final <<type>> <<identifier>> = <<value>>;
*Good programming practlce

—Make the scope public
—Make it static
—Capitalize all characters in the identifier

Examples
public static final double PI = 3.14159;
public static final int BOARD SIZE = 10;




File Edit “iew Help

Math

Operators
*Performs computation and then assigns the Syntax
results
e Order of Operations <<identifier>> = <<value>> <<operator>> <<value>>;

*Basic Math Operators

—Addition “+”
—Subtraction “-”
—Multiplication “*” Examples
—Division “/” //Variables
* Mod Operator “%” int value = 64 % 1 + 32;

—Returns the remainder after division //Constants
_Ex:15%2 =1 public static final double PI = 3.14159;

public static final double PI SQ = PI*PI;




I
]

Im
=
]

Math

Operators

Syntax

* Compute and Assign (C&A) Operators
—Shorthand for applying some operator and value to a variable
—Same as:

 <<jdentifier>> = <<identifier>> <<operator>> <<value>>; <<1ldentifier>> <<C&A operator>> <<value>>;

*Ex:i=i+1; i+=1; i++; //Same statements
* Common Versions
—“+=" —add and assign
—“-=" —subtract and assign

—“*=" —multiply and assign Examples

—“/=" — divide and assign _— . . * ] ]

_«9=" _ mod and assign i += 128; //If 1 = 32 now 1t is 160
j %= 2; //If j = 28.0 now it is 0.0

* Special versions

—“++” — Increase by 1
*Same as “+=1"

—“--" — Decrease by 1
*Same as “-=1"




File Edit “iew Help

eSystem.out.print(<<argument>>);

—Prints the argument from cursor’s current
location.

*System.out.printin();

—Prints the argument and moves the cursor down
one line.

—Adds the endline character ‘\n’ to the end.

*Prints to the standard system output, the
console.

Syntax

System.out.print(<<argument>>);

System.out.println(<<argument>>);

Examples

int 1 = 22;

double j = 3.14;
System.out.print(i);
System.out.print(“_*+j+“ ”);
System.out.println(i+“ ”+j);
System.out.println(i+2);

Console

22 3.14 22 3.14
24




Basic Input

* Use Scanner to read from Console

* Must import type Scanner from “java.util” package
—import java.util.Scanner;

*Create an instance of type Scanner that “scans” the
standard system input
—Scanner keyboard = new Scanner(System.in);

e Useful methods
—next()
—nextLine()
—nextint()
—nextDouble()

* Also can be used to “scan” Strings, files, network
traffic, etc.

Examples
Scanner keyboard = new Scanner(System.in);
String name = keyboard.nextLine();
int i = keyboard.nextInt();
keyboard.nextLine();//Useful “fix-up”
double j = keyboard.nextDouble();
keyboard.nextLine();//Useful “fix-up”
System.out.println(name+ “ “ + i + “ “ + j);

JJ
64

3.14
JJ 64 3.14




File Edit “iew Help

*Object type Examples

* Array of characters String str = “abcdefg”’;

*Denoted by double quotes () System.out.println(str.charAt(0));
—Characters are single quotes (") String str2 = str.substring(2,5);

*The plus (+) operator concatenates (appends) a System.out.println(str2);

value with a String

e Useful methods
—charAt(index)
—substring(startindex)
—substring(startindex, endindex)
—toUpperCase()

—toLowerCase()
—split(regular expression)




File Edit “iew Help

*Object type
* Array of characters

Example

String str = “abcd”;

String in Memory Concept




File Edit “iew Help

*Object type

* Array of characters

—> String str

Example

= “abcd”;

String in Memory Concept

str NULL 16




*Object type
* Array of characters

Example

m) String |[str = “abcd”]

String in Memory Concept

NULL

str

str
str
str

str

w N B o

‘\u0000’
‘\u0000’
‘\u0000’
‘\u0000’

16

128
130
132
134




*Object type
* Array of characters

Example

String |str = “abcd”]

String in Memory Concept

str NULL 16
str[O] ‘a’ 128
str[1] ‘b’ 130
str[2] ‘c 132
str[3] ‘d’ 134




File Edit “iew Help

*Object type
* Array of characters

Example

String |str = “abcd”]

String in Memory Concept

str 128\146

str[O] ‘a’ 128
str[1] ‘b’ 130
str[2] ‘c 132
str[3] ‘d’ 134




1
i

Im

=
]

I
[

* A collection (data structure) of items of the same type
* Fixed, contiguous block in memory
* Cannot resize in memory

—Size of the array needs to be known before it is created

* Java arrays are considered “Objects”
—Separated reference and contents
—Has built in properties like “.length”

* When arrays are constructed all items are assumed to
be assigned default values, in Java

* Indices (singular “index”) is how we can access and
modify values in an array

* Valid indices start from O until Length -1

—If an array had 10 elements, then the valid indices are from 0
to9

* Array’s “best friend” is a for-loop
—The loop can index into the array using its counter

Syntax

//Declaring and Constructing an Array

<<type>>[] <<identifier>> = new <<type>>[<<size>>];
//Indexing into an array to access a value
<<identifier>>[<<index>>];

//Indexing into an array to assigh / modify a value
<<identifier>>[<<index>>] = <<value>>;

Examples

int[] 1 =
i[2] = 22;
System.out.println(i[2]);

new int[5];




File Edit “iew Help

Example Array in Memory Concept

int[] a = new int[4]; __identifier | _ Contents _|_Byte Address _

al9| = 4;
a[2] = 2
a[1] = 3;
ala.length-1] = 1;




File Edit “iew Help

Example Array in Memory Concept

int[] aj= new int[4]; __identifier | _ Contents _|_Byte Address _

alo] = 4;

a[2] = 2 a NULL 16
a[1] = 3;

ala.length-1] = 1;




File Edit “iew Help

Example Array in Memory Concept

int[] la = new int[4]; __identifier | _ Contents _|_Byte Address _

alo] = 4;

a[2] = 2 a NULL 16

a[1] = 3;

ala.length-1] = 1; al0] 0 256
a[l] 0 260
a[2. 0 264
a[3] 0 268




File Edit “iew Help

Example Array in Memory Concept

int[] la = new int[4]; __identifier | _ Contents _|_Byte Address _

al9| = 4;

a[2] = 2 a 256 16
a[1] = 3; \
ala.length-1] = 1; al0] 0 256
a[l] 0 260
a[2. 0 264
a[3] 0 268




File Edit “iew Help

Example

int[] a = new int[4];

p[e] = 4;
a[2] = 2
all] = 3;
ala.length-1] = 1;

Array i1n Memory Concept

: ZMFﬁ\\\\\\:f

alo] 4 256
a[1] 0 260
al[2] 0 264
a[3. 0 268




File Edit “iew Help

Example Array in Memory Concept

int[] a = new int[4]; __identifier | _ Contents _|_Byte Address _

—B[e] = 4;

a[2] = 2 a 256 16
al[l] = 3; \
, .

a.length-1] = 1; re— al

0 4 256
all] 0 260
a2, 0 264
Memory Address = Start Address + Index * Datatype Size .
a[3] 0 268
——> 256=256+0%*4




File Edit “iew Help

Example Array in Memory Concept

int[] a = new int[4]; __identifier | _ Contents _|_Byte Address _

al9| = 4;

—al[2] = 2 . 256 16
a[1] = 3; \
ala.length-1] = 1; a[0] 4 256

all 0 260
r— a2 2 264
Memory Address = Start Address + Index * Datatype Size .
a3 0 268
o — 264=256+2%*4




File Edit “iew Help

Example Array in Memory Concept

int[] a = new int[4]; __identifier | _ Contents _|_Byte Address _

al9| = 4;

a[2] = 2 a 256 16
el[1] = 3; \

ala.length-1] = 1; al0] 4 256
— all] 3 260
a2 2 264
Memory Address = Start Address + Index * Datatype Size .
a[3] 0 268
- 260=256+1*4




File Edit “iew Help

Example Array in Memory Concept
int[] a = new int[4]; __identifier | Contents _|_Byte Address _
al@] = 4;

a[2] = 2 a 256 16

a[1] = 3; \4

g[a.length-1] = 1; a 4 296

a[1] 3 260

a[2] 2 264

Memory Address = Start Address + Index * Datatype Size 13 1 268
260=256+1%*4 ' -




File Edit “iew Help

Problem

Solving

2. Determine how the data changes over time.

This demonstrates how the software
behaves.

What are the noticeable patterns from
input to output?

Construct Flow-Charts for low-level logic.

What are some common actions within
these patterns? Can they be grouped and
reused as functions / methods?

What features modify the data and how?
Look for the Verbs

Behavior  lookforRelated Strycture

Software Patterns
(Behavior/Structure)

Develop Methods
related to the Data

Determine how Identif
Data changes Start Y
over time Data

Consider Group related Data
Structures in Classes

Identify Class Relationships




File Edit “iew Help

Branching

Statements
*|f-statement Syntax
*If the Boolean expression evaluates “true” then
the body of the if-statement is executed, and if(<<Boolean expression>>)

L. {
otherwise is ignored //Body of the if-statement

*Putting curly braces “{}” to denote the body of |}
the if-statement is strongly encouraged

(“u,n

*Do not put a semicolon “;” after the parenthesis Examples
if(a == b)

{

—|t will ignore the Boolean expression
*Spoken
—“if this is true then do this” }

System.out.println(“a is equal to b”);




File Edit “iew Help

Branching

Statements

eElse-statement

*Requires a proceeding if-statement
—|f-statements do not require an else-statement

*If the Boolean expression is “false” then the
body of the else-statement is executed, and
otherwise is ignhored

e Putting curly braces “{}” to denote the body of
the else-statement is strongly encouraged

*Spoken:

—“if this is true then do this, otherwise (else) do that”

Syntax

if(<<Boolean expression>>)

{

//Body of the if-statement

else
{
//Body of the else-statement
}
Examples
if(a == b)
{
System.out.println(“a is equal to b”);
}
else
{

¥

System.out.println(“a is not equal to b”);




Branching

Statements

e Else-If-statement

*Shorthand for an if-statement inside the body of
an else-statement that connected to preceding
If-statement

—“If nested within the else of another if”

*Requires a proceeding if-statement or else-if-
statement

e Putting curly braces “{}” to denote the body of
the else-statement is strongly encouraged

Syntax
if(<<Boolean expression>>)
{
//Body of the if-statement
}

else if(<<Boolean expression>>)

{
}

//Body of the else-if-statement

Examples

if(a < b)
{

}
else if(a > b)

{
}
else

{
}

System.out.println(“a is less than b”);

System.out.println(“a is greater than b”);

System.out.println(“a and b are equal);




File

Edit Wiew Help

1f (Boolean Expression_1)

{
Statement_1

}

else if (Boolean Expression_2)

{
Statement_2

}

else if (Boolean_Expression_3)

{
Statement_3

}
else
{
Default_Statement
}

Branching

Statements

i1f (Boolean Expression_ 1)

{
}

Statement_1

else

{

1f (Boolean Expression_ 2)

{
}

else

{

Statement_2

1f (B
{
}
else

{
}

oolean Exp 3)

Statement_3

Default_Statement




File

Edit Wiew Help

1f (Boolean Expression_1)

{
Statement_1

}

else if (Boolean Expression_2)

{
Statement_2

}

else if (Boolean_Expression_3)

{
Statement_3

}

else

{
Default_Statement

Branching
Statements

i1f (Boolean Expression_ 1)

{
Statement_1

}

1f (Boolean_ Expression_2)

{
Statement_2

}

1f (Boolean Expression_3)

{
Statement_3

}
else
{
Default Statement
}




Boolean

Expressions

*True or False Value

*Common Boolean Operators
—“==" 1 Equal to
—“1="": Not Equal
—“<“ . strictly less than
—“>" . strictly greater than
—“<=":|less than or equal to

—“>=“: greater than or equal to

Syntax

<<value>> <<Boolean operator>> <<value>>;

Examples

boolean a = 12 > 3;
if(a)//0Or a == true

{
System.out.println(“Here”);
}
else
{

System.out.println(“Not here”);
}




Compound

Boolean

Expressions

* Combines multiple Boolean expressions

* Common Compound Boolean Expression Operators
—“&&" : AND — both must be true to evaluate true
—“1|“: OR — one or both be true to evaluate true

o) u
-1

: NOT — negates the value. Not a binary operator like AND
or OR

 Truth Table

A B As&B_Alls_

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE
FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE

Syntax

<<Boolean expression>> <<operator>> <<Boolean expression>>;

Examples

boolean a = 2 != 0 && 12 > 3;
if(a)//0Or a == true

{
System.out.println(“Here”);
}
else
{

System.out.println(“Not here”);
}




File Edit “iew Help

Loops

*Runs a block of code some number of times

*The body of the loop runs while a Boolean
expression is true

*While-loops are “check then iterate”
—The body of the loop may run 0 to many times

*Great when unsure how many times the loop
needs to run

*Spoken:
—“While this is true, keep doing this”
—“Until this is false, keep doing this”

Syntax

while(<<Boolean Expression>>)

{
<<Body of the Loop>>

¥

Examples

while(!gameOver)

{
gamelLoop();




File Edit “iew Help

Loops

*Do-While-loops are “iterate then check”
—The body of the loop may run 1 to many times
*Great when unsure how many times the loop

needs to run, but also needs to run the body of
the loop at least once.

*Semi-colon must come after the while or it’s a
syntax error

*Spoken:
—“Do this While this is true”

Syntax

do

{
<<Body of the Loop>>

}while(<<Boolean Expression>>);

Examples

do

{
eat();

}while(full == false);




File Edit “iew Help

Loops

*For-loops are “counting loops”
—The body of the loop runs some number of times.

*Great when it is known how many times the
loop must run

*The sequence of a for-loop goes as
1. Initialize counter
2. Check Boolean Expression
3. Run Body of the Loop
4. Update the counter and go back to Step 2.

*Spoken:

—“For this starts here and ends here, do this that many
times”

Syntax

for(<<initialize counter>>;<<Boolean expression>>;<<update counter>>)

{
<<Body of the Loop>>

}

Examples
for(int 1=0;1<10;i++)

{
System.out.println(i);




File Edit “iew Help

Example Array in Memory Concept
int[] a = new int[5]; it | comars | oy s
= J
for(int i=0;i<a.length;i++) : - -
{

a[i] = 1i*2;




File Edit “iew Help

Example

int[] a = new int[5];

for(int i=0;i<a.lengt

{

ali] = 1*2;

N3 i++)

Header

1

Body

Array i1n Memory Concept

a 512 16
Meta Data Class / Datatype 512
a.length 4 520
a[0] 0 524
a[l] 0 528
al2] 0) 532
a[3] 0 536




File Edit “iew Help

{

ali] = 1*2;

Example

int[] a = new int[5];
for(fint i=0;li<a.length;i++)

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O O o

16
20

512
520
524
528
532
536




File Edit Wiew

Help

{

for(int i=0;

Example

int[] a = new int[5];

1<a.length

s1+4)

ali] = 1*2;

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O O o

16
20

512
520
524
528
532
536




File Edit “iew Help

int[] a

{

Example

new int[5];

for(int i=0;i<a.length;i++)

ali]

i*2;|

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O O o

16
20

512
520
524
528
532
536




File Edit Wiew

Help

{

ali] = 1*2;

Example

int[] a = new int[5];
for(int 1=0;i<a.length;

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O O o

16
20

512
520
524
528
532
536




File Edit Wiew

Help

{

for(int i=0;

Example

int[] a = new int[5];

i<a.length

s1+4)

ali] = 1*2;

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O O o

16
20

512
520
524
528
532
536




File Edit Wiew

Help

{

p[i] = i*2}

Example

int[] a = new int[5];
for(int i=0;i<a.length;i++)

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O N O

16
20

512
520
524
528
532
536




File Edit Wiew

Help

{

ali] = 1*2;

Example

int[] a = new int[5];
for(int 1=0;i<a.length;

1++

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

o O N O

16
20

512
520
524
528
532
536




Some [ime Passes

i

! o




File Edit Wiew

Help

{

ali] = 1*2;

Example

int[] a = new int[5];
for(int i=0;i<a.length;i++)

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

0)
2
4
6

16
20

512
520
524
528
532
536




File Edit Wiew

Help

{

ali] = 1*2;

Example

int[] a = new int[5];
for(int i=a.length-1;i>=0;i--)

Array i1n Memory Concept

Meta Data
a.length
a[0]
a[1]
a[2]
a[3]

512

Class / Datatype
4

0)
2
4
6

16
20

512
520
524
528
532
536




Prosramming Revieu
Fart uc




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

