

Programming Review

Part 02

Procedural Programming

Behavior Structure

Problem
Solving

Identify
Data

Determine how
Data changes

over time

Group related Data
in Classes

Develop Methods
related to the Data

Identify Class Relationships

Look for Related
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures

Problem
Solving

1. Identify your Data.

2. Determine how the data changes over time.

3. Consider structures for both behavior and
data.

4. Group together (encapsulate) related
information into Classes of Objects.

5. Develop functionality / methodologies that
relates to the behavior of your Objects.

6. Further identify relationships between the
Classes and optimize the structure.

7. Determine if there exists software patterns
that may assist.

<<type>> <<identifier>>;

Example

double j;

Behavior Structure

Identify
Data

Determine how
Data changes

over time

Group related Data
in Classes

Develop Methods
related to the Data

Identify Class Relationships

Look for Related
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures

Problem
Solving

1. Identify your data.

– What information do we need to keep in our
memory?

– What information is variable and what
information is constant?

– How do we represent the data?

– What is the type of data?

• Numeric? Whole or Decimal?

• Characters?

• Words/Strings?

• Collections? Other Structures?

– Look for the Nouns

<<type>> <<identifier>>;

Example

double j;

Behavior Structure

Identify
Data

Determine how
Data changes

over time

Group related Data
in Classes

Develop Methods
related to the Data

Identify Class Relationships

Look for Related
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures

Syntax

<<type>> <<identifier>>;

Variables

•Stores changeable information

•Containers for Data

•Declaring

–Creates a Variable

–(Data) Type

–Identifier

•Spoken:

–“Reserve space in memory for this type called this
identifier” or

–“Find some space to store this type of data”

Example

double j;

Primitive Types

<<type>> <<identifier>>;

Variables
Types

•Type corresponds to bytes in memory

•Only use the type when declaring

•Programming Languages are either

–Strongly Typed

–Weakly Typed

•Primitive Types

•Object Types

–Reference points to

–Contents

•Bold are the most commonly used primitive
data types in this course

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to
2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7
decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15
decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values

Example

int i;

double j;

char o;

Memory Concept

Physical Memory Concept

Variables
Types

Identifier Contents Byte
Address

… … …

i 0 28

j 0.0 32

o ‘\u0000’ 40

Future Variable - 42

… … …

id i

Byte 28 29 30 31

Bit 0

Good Examples

int test01;

double largeValues;

boolean inClass;

Variable
Identifiers

•Gives the variable a “name”

•Use the name to retrieve and store information

•Case sensitive
–int test, int TEST, int tEsT would be 3 different identifiers

•“Camel Casing” common practice used for
identifiers

• Identifiers cannot
–Start with a Digit

–Have Spaces

–Match a reserved word

• Identifiers should avoid
–Special Characters

–Confusing names

Bad Examples

int 1Test;//Started with a digit

double big vals;//Used a space

boolean class;//Class is a reserved word

Syntax

<<identifier>> = <<value>>;

Assignment
Operator

•The equals symbol “=” is the Assignment Operator

•Stores values found on the right hand side (RHS) of
the operator into the identifier found on the left
hand side (LHS)

•Assignments are valid if the type matches are is at
least compatible
–Primitive types can be stored in other primitive types as
long the type’s byte amount is less than or equal to value
being stored

–Otherwise “type casting” is required

–Type casting does not round it cuts off everything past the
decimal point “.”

•Spoken:
–“Store this value in this container”

Examples

i = 4;

j = 22.3;

o = ‘h’;

i = (int)j;//Type cast from double to int

//Value stored in “i” is 22

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Identifier Contents Byte Address

… … …

Future Variable - 28

… … …

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Identifier Contents Byte Address

… … …

i 0 28

Future Variable - 32

… … …

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Identifier Contents Byte Address

… … …

i 4 28

Future Variable - 32

… … …

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Identifier Contents Byte Address

… … …

i 4 28

j 0.0 32

Future Variable - 40

… … …

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Identifier Contents Byte Address

… … …

i 4 28

j 22.3 32

Future Variable - 40

… … …

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Identifier Contents Byte Address

… … …

i 4 28

j 22.3 32

o ‘h’ 40

Future Variable -

… … …

Memory Concept

Variables
Types

•Declare and assigning initial values

–Good programming practice

–Shortens two statements into one

–Types are not still used after the declaration

Example

int i = 4;

double j = 22.3;

char o = ‘h’;

i = (int)j; //Typecast

Assignment
Operator

Identifier Contents Byte Address

… … …

i 22 28

j 22.3 32

o ‘h’ 40

Future Variable -

… … …

Syntax

public static final <<type>> <<identifier>> = <<value>>;

Constants

•Establishes a value that cannot change

•Great for avoiding “magic numbers”

•Good programming practice

–Make the scope public

–Make it static

–Capitalize all characters in the identifier
Examples

public static final double PI = 3.14159;

public static final int BOARD_SIZE = 10;

Syntax

<<identifier>> = <<value>> <<operator>> <<value>>;

Math
Operators

•Performs computation and then assigns the
results

•Order of Operations

•Basic Math Operators

–Addition “+”

–Subtraction “-”

–Multiplication “*”

–Division “/”

•Mod Operator “%”

–Returns the remainder after division

–Ex: 15 % 2 = 1

Examples

//Variables

int value = 64 % i + 32;

//Constants

public static final double PI = 3.14159;

public static final double PI_SQ = PI*PI;

Syntax

<<identifier>> <<C&A operator>> <<value>>;

Math
Operators

•Compute and Assign (C&A) Operators
–Shorthand for applying some operator and value to a variable

–Same as:
•<<identifier>> = <<identifier>> <<operator>> <<value>>;

•Ex: i = i+1; i+=1; i++; //Same statements

•Common Versions
–“+=” – add and assign

–“-=” – subtract and assign

–“*=” – multiply and assign

–“/=” – divide and assign

–“%=” – mod and assign

• Special versions
–“++” – Increase by 1
•Same as “+= 1”

–“--” – Decrease by 1
•Same as “-=1”

Examples

i += 128; //If i = 32 now it is 160

j %= 2; //If j = 28.0 now it is 0.0

Syntax
System.out.print(<<argument>>);

System.out.println(<<argument>>);

Basic
Output

•System.out.print(<<argument>>);

–Prints the argument from cursor’s current
location.

•System.out.println();

–Prints the argument and moves the cursor down
one line.

–Adds the endline character ‘\n’ to the end.

•Prints to the standard system output, the
console.

Examples

int i = 22;

double j = 3.14;

System.out.print(i);

System.out.print(“_”+j+“ ”);

System.out.println(i+“ ”+j);

System.out.println(i+2);

Console

22_3.14 22 3.14

24

Basic Input

•Use Scanner to read from Console

•Must import type Scanner from “java.util” package
–import java.util.Scanner;

•Create an instance of type Scanner that “scans” the
standard system input
–Scanner keyboard = new Scanner(System.in);

•Useful methods
–next()

–nextLine()

–nextInt()

–nextDouble()

•Also can be used to “scan” Strings, files, network
traffic, etc.

Examples
Scanner keyboard = new Scanner(System.in);

String name = keyboard.nextLine();

int i = keyboard.nextInt();

keyboard.nextLine();//Useful “fix-up”

double j = keyboard.nextDouble();

keyboard.nextLine();//Useful “fix-up”

System.out.println(name+ “ “ + i + “ “ + j);

Console

JJ

64

3.14

JJ 64 3.14

Strings

•Object type

•Array of characters

•Denoted by double quotes (“”)
–Characters are single quotes (‘’)

•The plus (+) operator concatenates (appends) a
value with a String

•Useful methods
–charAt(index)

–substring(startIndex)

–substring(startIndex, endIndex)

–toUpperCase()

–toLowerCase()

–split(regular expression)

Examples

String str = “abcdefg”;

System.out.println(str.charAt(0));

String str2 = str.substring(2,5);

System.out.println(str2);

Console

a

cde

Strings

•Object type

•Array of characters

String in Memory Concept

Example

String str = “abcd”;

Identifier Contents Byte Address

… … …

… … …

Strings

•Object type

•Array of characters

String in Memory Concept

Example

String str = “abcd”;

Identifier Contents Byte Address

… … …

str NULL 16

… … …

… … …

Strings

•Object type

•Array of characters

String in Memory Concept

Example

String str = “abcd”;

Identifier Contents Byte Address

… … …

str NULL 16

… … …

str[0] ‘\u0000’ 128

str[1] ‘\u0000’ 130

str[2] ‘\u0000’ 132

str[3] ‘\u0000’ 134

… … …

Strings

String in Memory Concept

Identifier Contents Byte Address

… … …

str NULL 16

… … …

str[0] ‘a’ 128

str[1] ‘b’ 130

str[2] ‘c’ 132

str[3] ‘d’ 134

… … …

•Object type

•Array of characters

Example

String str = “abcd”;

Strings

String in Memory Concept

Identifier Contents Byte Address

… … …

str 128 16

… … …

str[0] ‘a’ 128

str[1] ‘b’ 130

str[2] ‘c’ 132

str[3] ‘d’ 134

… … …

•Object type

•Array of characters

Example

String str = “abcd”;

Syntax
//Declaring and Constructing an Array

<<type>>[] <<identifier>> = new <<type>>[<<size>>];

//Indexing into an array to access a value

<<identifier>>[<<index>>];

//Indexing into an array to assign / modify a value

<<identifier>>[<<index>>] = <<value>>;

Arrays

•A collection (data structure) of items of the same type

• Fixed, contiguous block in memory

• Cannot resize in memory
–Size of the array needs to be known before it is created

• Java arrays are considered “Objects”
–Separated reference and contents

–Has built in properties like “.length”

•When arrays are constructed all items are assumed to
be assigned default values, in Java

• Indices (singular “index”) is how we can access and
modify values in an array

• Valid indices start from 0 until Length – 1
–If an array had 10 elements, then the valid indices are from 0

to 9

•Array’s “best friend” is a for-loop
–The loop can index into the array using its counter

Examples

int[] i = new int[5];

i[2] = 22;

System.out.println(i[2]);

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a NULL 16

… … …

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a NULL 16

… … …

a[0] 0 256

a[1] 0 260

a[2] 0 264

a[3] 0 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 256 16

… … …

a[0] 0 256

a[1] 0 260

a[2] 0 264

a[3] 0 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 256 16

… … …

a[0] 4 256

a[1] 0 260

a[2] 0 264

a[3] 0 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 256 16

… … …

a[0] 4 256

a[1] 0 260

a[2] 0 264

a[3] 0 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Memory Address = Start Address + Index * Datatype Size

256 = 256 + 0 * 4

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 256 16

… … …

a[0] 4 256

a[1] 0 260

a[2] 2 264

a[3] 0 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Memory Address = Start Address + Index * Datatype Size

264 = 256 + 2 * 4

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 256 16

… … …

a[0] 4 256

a[1] 3 260

a[2] 2 264

a[3] 0 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Memory Address = Start Address + Index * Datatype Size

260 = 256 + 1 * 4

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 256 16

… … …

a[0] 4 256

a[1] 3 260

a[2] 2 264

a[3] 1 268

… … …

Example

int[] a = new int[4];

a[0] = 4;

a[2] = 2

a[1] = 3;

a[a.length-1] = 1;

Memory Address = Start Address + Index * Datatype Size

260 = 256 + 1 * 4

Problem
Solving

2. Determine how the data changes over time.

– This demonstrates how the software
behaves.

– What are the noticeable patterns from
input to output?

– Construct Flow-Charts for low-level logic.

– What are some common actions within
these patterns? Can they be grouped and
reused as functions / methods?

– What features modify the data and how?

– Look for the Verbs

<<type>> <<identifier>>;

Example

double j;

Behavior Structure

Identify
Data

Determine how
Data changes

over time

Group related Data
in Classes

Develop Methods
related to the Data

Identify Class Relationships

Look for Related
Software Patterns

(Behavior/Structure)

Start

End

Consider
Structures

Syntax

if(<<Boolean expression>>)

{

 //Body of the if-statement

}

Branching
Statements

•If-statement

•If the Boolean expression evaluates “true” then
the body of the if-statement is executed, and
otherwise is ignored

•Putting curly braces “{}” to denote the body of
the if-statement is strongly encouraged

•Do not put a semicolon “;” after the parenthesis

–It will ignore the Boolean expression

•Spoken

–“if this is true then do this”

Examples

if(a == b)

{

 System.out.println(“a is equal to b”);

}

Syntax

if(<<Boolean expression>>)
{
 //Body of the if-statement
}
else
{
 //Body of the else-statement
}

Branching
Statements

•Else-statement

•Requires a proceeding if-statement

–If-statements do not require an else-statement

•If the Boolean expression is “false” then the
body of the else-statement is executed, and
otherwise is ignored

•Putting curly braces “{}” to denote the body of
the else-statement is strongly encouraged

•Spoken:

–“if this is true then do this, otherwise (else) do that”

Examples
if(a == b)
{
 System.out.println(“a is equal to b”);
}
else
{
 System.out.println(“a is not equal to b”);
}

Syntax

if(<<Boolean expression>>)
{
 //Body of the if-statement
}
else if(<<Boolean expression>>)
{
 //Body of the else-if-statement
}

Branching
Statements

•Else-If-statement

•Shorthand for an if-statement inside the body of
an else-statement that connected to preceding
If-statement

–“If nested within the else of another if”

•Requires a proceeding if-statement or else-if-
statement

•Putting curly braces “{}” to denote the body of
the else-statement is strongly encouraged

Examples
if(a < b)
{
 System.out.println(“a is less than b”);
}
else if(a > b)
{
 System.out.println(“a is greater than b”);
}
else
{
 System.out.println(“a and b are equal);
}

Branching
Statements

if (Boolean_Expression_1)

{

 Statement_1

}

else if (Boolean_Expression_2)

{

 Statement_2

}

else if (Boolean_Expression_3)

{

 Statement_3

}

else

{

 Default_Statement

}

if (Boolean_Expression_1)

{

 Statement_1

}

else

{

 if (Boolean_Expression_2)

 {

 Statement_2

 }

 else

 {

 if(Boolean_Exp_3)

 {

 Statement_3

 }

 else

 {

 Default_Statement

 }

 }

}

Branching
Statements

if (Boolean_Expression_1)

{

 Statement_1

}

if (Boolean_Expression_2)

{

 Statement_2

}

if (Boolean_Expression_3)

{

 Statement_3

}

else

{

 Default_Statement

}

if (Boolean_Expression_1)

{

 Statement_1

}

else if (Boolean_Expression_2)

{

 Statement_2

}

else if (Boolean_Expression_3)

{

 Statement_3

}

else

{

 Default_Statement

}

Syntax

<<value>> <<Boolean operator>> <<value>>;

Boolean
Expressions

•True or False Value

•Common Boolean Operators

–“==“ : Equal to

–“!=“ : Not Equal

–“<“ : strictly less than

–“>” : strictly greater than

–“<=“: less than or equal to

–“>=“: greater than or equal to

Examples

boolean a = 12 > 3;
if(a)//Or a == true
{
 System.out.println(“Here”);
}
else
{
 System.out.println(“Not here”);
}

Syntax

<<Boolean expression>> <<operator>> <<Boolean expression>>;

Compound
Boolean

Expressions

•Combines multiple Boolean expressions

•Common Compound Boolean Expression Operators

–“&&“ : AND – both must be true to evaluate true

–“||“ : OR – one or both be true to evaluate true

–“!“ : NOT – negates the value. Not a binary operator like AND
or OR

•Truth Table
Examples

boolean a = 2 != 0 && 12 > 3;
if(a)//Or a == true
{
 System.out.println(“Here”);
}
else
{
 System.out.println(“Not here”);
}

A B A && B A || B

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

Syntax

while(<<Boolean Expression>>)

{

 <<Body of the Loop>>

}

Loops

•Runs a block of code some number of times

•The body of the loop runs while a Boolean
expression is true

•While-loops are “check then iterate”

–The body of the loop may run 0 to many times

•Great when unsure how many times the loop
needs to run

•Spoken:

–“While this is true, keep doing this”

–“Until this is false, keep doing this”

Examples

while(!gameOver)

{

 gameLoop();

}

Syntax

do

{

 <<Body of the Loop>>

}while(<<Boolean Expression>>);

Loops

•Do-While-loops are “iterate then check”

–The body of the loop may run 1 to many times

•Great when unsure how many times the loop
needs to run, but also needs to run the body of
the loop at least once.

•Semi-colon must come after the while or it’s a
syntax error

•Spoken:

–“Do this While this is true”

Examples

do

{

 eat();

}while(full == false);

Syntax

for(<<initialize counter>>;<<Boolean expression>>;<<update counter>>)

{

 <<Body of the Loop>>

}

Loops

•For-loops are “counting loops”

–The body of the loop runs some number of times.

•Great when it is known how many times the
loop must run

•The sequence of a for-loop goes as

1. Initialize counter

2. Check Boolean Expression

3. Run Body of the Loop

4. Update the counter and go back to Step 2.

•Spoken:

–“For this starts here and ends here, do this that many
times”

Examples

for(int i=0;i<10;i++)

{

 System.out.println(i);

}

Arrays

Array in Memory ConceptExample

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Identifier Contents Byte Address

… … …

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 0 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}
Header

Body

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 0 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 0 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 0 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 0 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 0 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 0 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 1 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 0 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 1 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 0 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 1 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 2 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 2 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 2 528

a[2] 0 532

a[3] 0 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Some Time Passes

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 4 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 2 528

a[2] 4 532

a[3] 6 536

… … …

Example

int[] a = new int[5];

for(int i=0;i<a.length;i++)

{

 a[i] = i*2;

}

Arrays

Array in Memory Concept

Identifier Contents Byte Address

… … …

a 512 16

i 0 20

… … …

Meta Data Class / Datatype 512

a.length 4 520

a[0] 0 524

a[1] 2 528

a[2] 4 532

a[3] 6 536

… … …

Example

int[] a = new int[5];

for(int i=a.length-1;i>=0;i--)

{

 a[i] = i*2;

}

Programming Review

Part 02

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

