Support Vector Machines

1. Importance of SVM

- SVM is a discriminative method that brings together:
 - 1. computational learning theory
 - 2. previously known methods in linear discriminant functions
 - 3. optimization theory
- Also called Sparse kernel machines
 - Kernel methods predict based on linear combinations of a kernel function evaluated at the training points, e.g., Parzen Window
 - Sparse because not all pairs of training points need be used
- Also called Maximum margin classifiers
- Widely used for solving problems in classification, regression and novelty detection

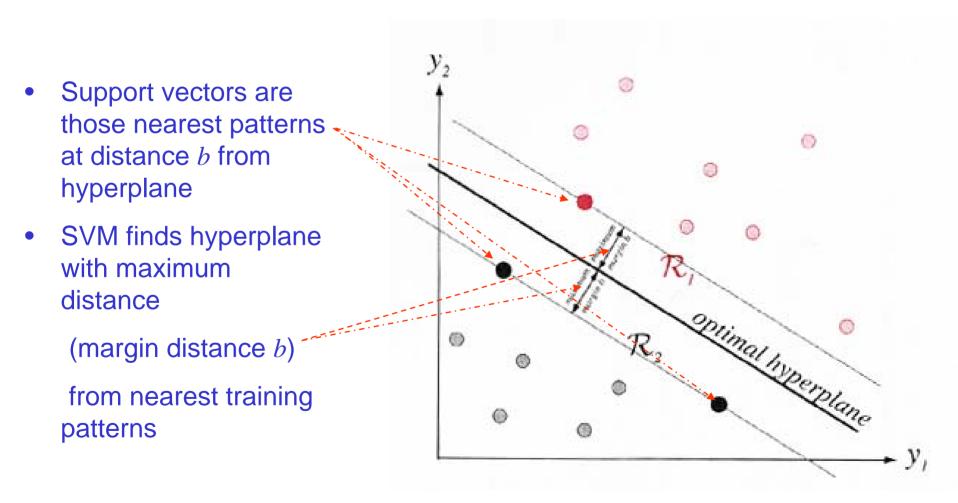
2. Mathematical Techniques Used

Linearly separable case considered since appropriate nonlinear mapping φ to a high dimension two categories are always separable by a hyperplane

2. To handle non-linear separability:

- Preprocessing data to represent in much higherdimensional space than original feature space
- Kernel trick reduces computational overhead

3. Support Vectors and Margin



Three support vectors are shown as solid dots

Margin Maximization

- Why maximize margin?
- Motivation found in computational learning theory or statistical learning theory (PAC learning-VC dimension)
- Insight given as follows (Tong, Koller 2000):
 - Model distributions for each class using Parzen density estimators using Gaussian kernels with common parameter σ^2
 - Instead of optimum boundary, determine best hyperplane relative to learned density model
 - As $\sigma^2 \rightarrow 0$ optimum hyperplane has maximum margin
 - Hyperplane becomes independent of data points that are not support vectors

Distance from arbitrary point and plane

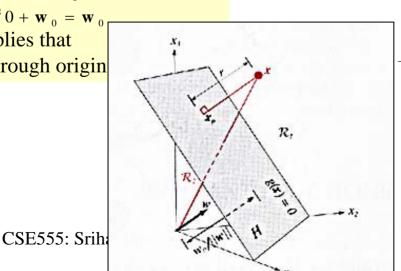
- Hyperplane: $g(x) = w^t \cdot x + w_0$ where w is the weight vector and w_0 is bias
- Lemma:: Distance from x to the plane is $r = \frac{g(x)}{\|w\|}$

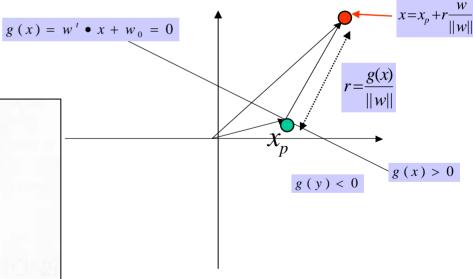
Proof: Let
$$x = x_p + r \frac{w}{\|w\|}$$
 where r is the distance from x to the plane,
$$g(x) = w^t (x_p + r \frac{w}{\|w\|}) + w_0 = w^t x_p + w_0 + r \frac{w^t w}{\|w\|} = g(x_p) + r \frac{\|w\|^2}{\|w\|} = r \|w\|$$
QED

Corollary: Distance of origin to plane is

$$r = g(0)/||\mathbf{w}|| = \mathbf{w}_0/||\mathbf{w}||$$

since $\mathbf{g}(0) = \mathbf{w}^{t} 0 + \mathbf{w}_{0} = \mathbf{w}_{0}$ Thus $\mathbf{w}_{0}=0$ implies that plane passes through origin





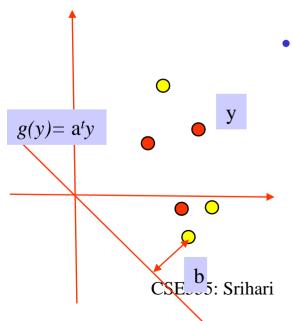
Choosing a margin

- Augmented space: $g(y) = a^t y$ by choosing $a_0 = w_0$ and $y_0 = 1$, i.e, plane passes through origin
- For each of the patterns, let $z_k = \pm 1$ depending on whether pattern k is in class ω_1 or ω_2
- Thus if g(y)=0 is a separating hyperplane then $z_k g(y_k) \ge 0, k = 1,..., n$
- Since distance of a point y to hyperplane g(y)=0 is

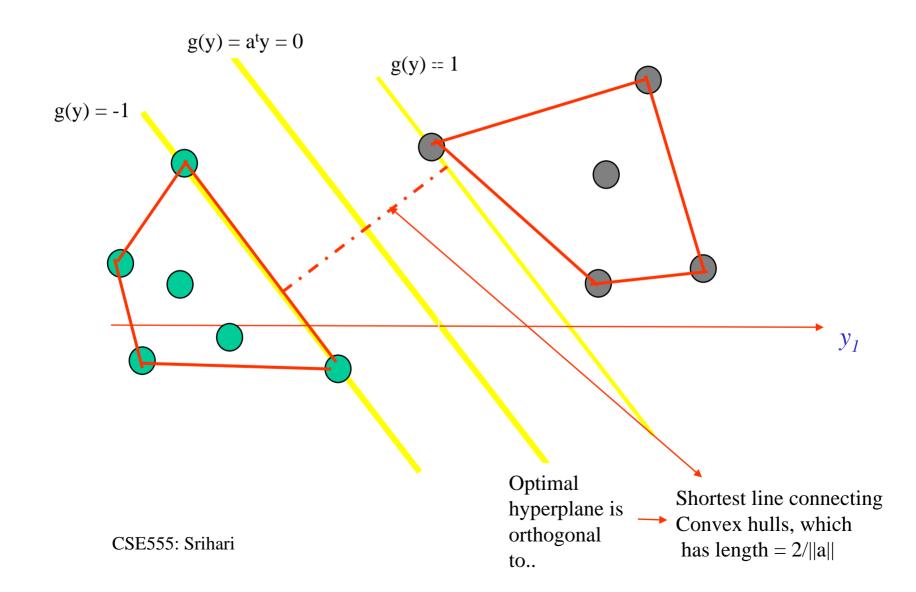
$$\frac{g(y)}{\|\mathbf{a}\|}$$

we could require that hyperplane be such that all points are at least distant b from it, i.e.,

$$\frac{z_k g(y_k)}{\|\mathbf{a}\|} \ge b$$



SVM Margin geometry



4. SVM Training Methodology

- 1. Training is formulated as an optimization problem
 - Dual problem is stated to reduce computational complexity
 - Kernel trick is used to reduce computation
- 2. Determination of the model parameters corresponds to a convex optimization problem
 - Solution is straightforward (local solution is a global optimum)
- 3. Makes use of Lagrange multipliers

Kernel Function: key property

If kernel function is chosen with property

$$K(\mathbf{x},\mathbf{y}) = (\phi(\mathbf{x}), \phi(\mathbf{y}))$$

then computational expense of increased dimensionality is avoided.

• Polynomial kernel $K(\mathbf{x},\mathbf{y}) = (\mathbf{x},\mathbf{y})^d$ can be shown (next slide) to correspond to a map ϕ into the space spanned by **all** products of exactly d dimensions.

A Polynomial Kernel Function

Suppose $x = (x_1, x_2)$ is the input vector

The feature space mapping is:

$$\varphi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^t$$

Then inner product is

$$\varphi(\mathbf{x})\varphi(\mathbf{y}) = \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)^2 \left(y_1^2, \sqrt{2}y_1y_2, y_2^2\right) = (x_1y_1 + x_2y_2)^2$$

Polynomial kernel function to compute the same value is

$$K(x,y) = (x.y)^{2} = ((x_{1},x_{2})(y_{1},y_{2})^{t})^{2} = (x_{1}y_{1} + x_{2}y_{2})^{2}$$
or
$$K(x,y) = \varphi(x)\varphi(y)$$

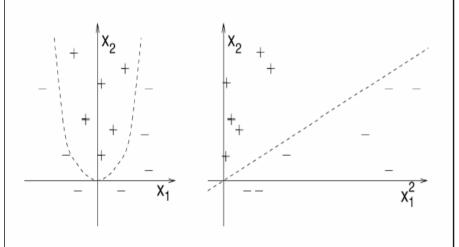
- Inner product $\varphi(\mathbf{x})\varphi(\mathbf{y})$ needs computing six feature values and 3 x 3 = 9 multiplications
- Kernel function K(x,y) has 2 multiplications and a squaring

Another Polynomial (quadratic) kernel function

Example

Input Space: $\hat{x} = (x_1, x_2)$ (2 Attributes)

Feature Space: $\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ (6 Attributes)



- $K(x,y) = (x,y+1)^2$
- This one maps d = 2, p = 2 into a six- dimensional space
- Contains all the powers of x

$$\mathbf{K}(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})\varphi(\mathbf{y})$$
where
$$\varphi(\mathbf{x}) = \left(\mathbf{x}_1^2, \mathbf{x}_2^2, \sqrt{2}\mathbf{x}_1, \sqrt{2}\mathbf{x}_2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2, 1\right)$$

- Inner product needs 36 multiplications
- Kernel function needs 4 multiplications

SVM with Kernels

Training: maximize
$$D(\alpha) = \left(\sum_{i=1}^{n} \alpha_i\right) - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_j y_j K(x_i, x_j)$$

s. t. $\sum_{i=1}^{n} \alpha_i y_i = 0$ und $0 \le \alpha_i \le C$

Classification: For new example
$$x$$
 $h(x) = sign\left(\sum_{x_i \in SV} \alpha_i y_i K(x_i, x) + b\right)$

New hypotheses spaces through new Kernels:

Linear: $K(\vec{x}_i, \vec{x}_j) = \vec{x}_i \cdot \vec{x}_j$

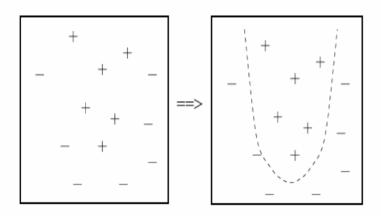
Polynomial: $K(\vec{x}_i, \vec{x}_j) = [\vec{x}_i \cdot \vec{x}_j + 1]^d$

Radial Basis Functions: $K(\vec{x}_i, \vec{x}_j) = \exp(-|\vec{x}_i - \vec{x}_j|^2 / \sigma^2)$

Sigmoid: $K(\vec{x}_i, \vec{x}_j) = \tanh(\gamma(\vec{x}_i - \vec{x}_j) + c)$

Non-Linear Case

Non-Linear Problems



Problem:

- some tasks have non-linear structure
- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?

- Mapping function $\phi(.)$ to a sufficiently high dimension
- So that data from two categories can always be separated by a hyperplane
- Assume each pattern x_k has been transformed to

$$\mathbf{y}_{k} = \phi(\mathbf{x}_{k}), \text{ for } k=1,..., n$$

- First choose the non-linear ϕ functions
 - To map the input vector to a higher dimensional feature space
- Dimensionality of space can be arbitrarily high only limited by computational resources

Mapping into Higher Dimensional Feature Space

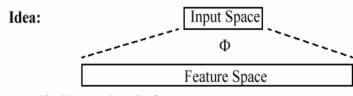
Mapping each input point x by map

$$\mathbf{y} = \Phi(\mathbf{x}) = \begin{pmatrix} 1 \\ \mathbf{x} \\ \mathbf{x}^2 \end{pmatrix}$$

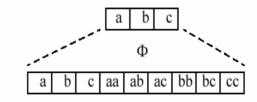
Points on 1-d line are mapped onto curve in 3-d.

• Linear separation in 3-d space is possible. Linear discriminant function in 3-d is in the form

$$g(x) = a_1 y_1 + a_2 y_2 + a_3 y_3$$



==> Find hyperplane in feature space!



==> The separating hyperplane in features space is a degree two polynomial in input space.

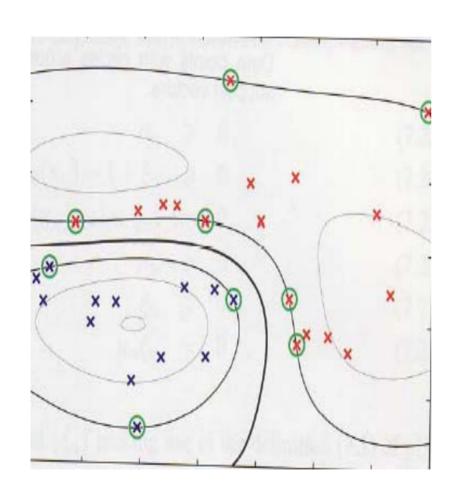
Pattern Transformation using Kernels

- Problem with high-dimensional mapping
 - Very many parameters
 - Polynomial of degree p over d variables leads to O(d^p) variables in feature space
 - Example: if d = 50 and p = 2 we need a feature space of size 2500
- Solution:
 - Dual Optimization problem needs only inner products
 - Each pattern x_k transformed into pattern y_k where

$$\mathbf{y}_{\mathbf{k}} = \Phi(\mathbf{X}_{\mathbf{k}})$$

• Dimensionality of mapped space can be arbitrarily high

Example of SVM results



CSE555: Srihari

- Two classes in two dimensions
- Synthetic Data
- Shows contours of constant g (x)
- Obtained from SVM with Gaussian kernel function
- Decision boundary is shown
- Margin boundaries are shown
- Support vectors are shown
- Shows sparsity of SVM

Demo

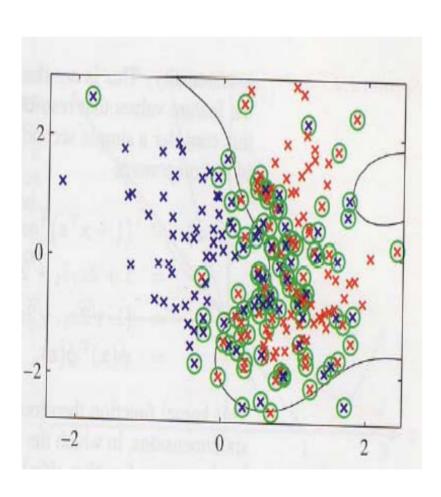
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Svmtoy.exe

5. Overlapping Class Distributions

- We assumed training data are linearly separable in the mapped space y
- Resulting SVM will give exact separation in input space x although decision boundary will be nonlinear
- In practice class-conditional distributions will overlap
- In which case exact separation of training data will lead to poor generalization
- Therefore need to allow SVM to misclassify some training points

v-SVM applied to non-separable data



- Support Vectors are indicated by circles
- Done by introducing slack variables
- With one slack variable per training data point
- Maximize the margin while softly penalizing points that lie on the wrong side of the margin boundary
- □ v is an upper-bound on the fraction of margin errors (lie on wrong side of margin boundary)

6. Multiclass SVMs (one-versus rest)

- SVM is fundamentally a two-class classfier
- Several suggested methods for combining multiple twoclass classfiers
- Most widely used approach: one versus rest
 - Also recommended by Vapnik
 - using data from class C_k as the positive examples and data from the remaining k-l classes as negative examples
 - Disadvantages
 - input can be assigned to multiple classes simultaneously
 - Training sets are imbalanced (90% are one class and 10% are another)—symmetry of original problem is lost

Multiclass SVMs (one-versus one)

- Train k(k-1)/2 different 2-class SVMs on all possible pairs of classes
- Classify test points according to which class has highest number of votes
- Again leads to ambiguities in classification
- For large k requires significantly more training time than one-versus rest
- Also more computation time for evaluation
 - Can be alleviated by organizing into a directed acyclic graph (DAGSVM)

7. SVM and Computational Learning Theory

- SVM is historically motivated and analyzed using a theoretical framework called computational learning theory
- Called Probably Approximately Correct or PAC learning framework
- Goal of PAC framework is to understand how large a data sets needs to be in order to give good generalizations
- Key quantity in PAC learning is Vapnik-Chernovenkis (VC) dimension which provides a measure of complexity of a space of functions

All dichotomies of 3 points in 2 dimensions are linearly separable

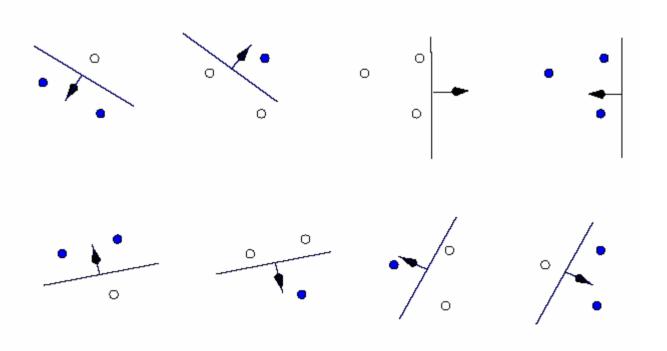
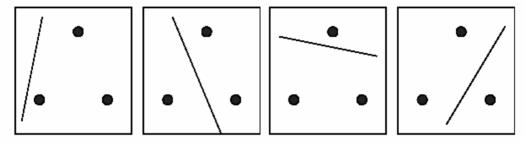


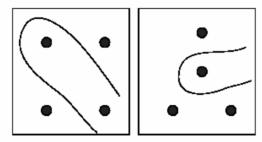
Figure 1. Three points in \mathbb{R}^2 , shattered by oriented lines.

VC Dimension of Hyperplanes in R²

• Three points in \Re^2 can be shattered with hyperplanes.



Four points cannot be shattered.



VC dimension provides the complexity of a class of decision functions

=> Hyperplanes in $\Re^2 -> VCdim = 3$

Hyperplanes in R^d → VC Dimension = d+1

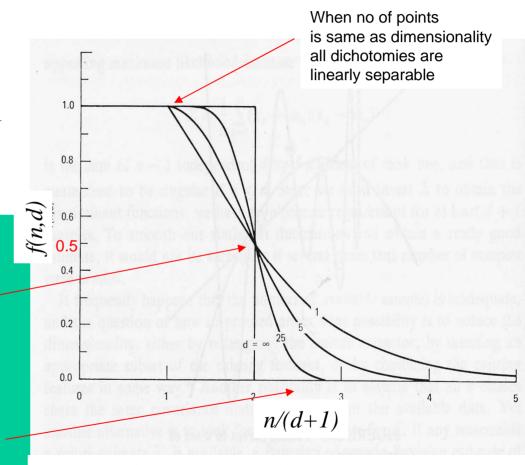
Fraction of Dichotomies that are linearly separable

$$f(n,d) = \begin{cases} 2^n \sum_{i=0}^{d} {n-1 \choose i} & n > d+1 \\ n > d+1 \end{cases}$$

Capacity of a hyperplane

At n = 2(d+1), called the capacity of the hyperplane nearly one half of the dichotomies are still linearly separable

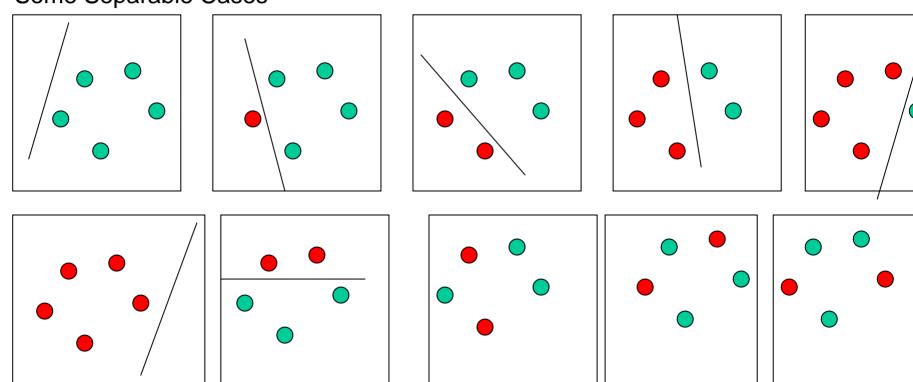
Hyperplane is not over-determined until number of samples is several times the dimensionality



Fraction of dichotomies of *n* points in *d* dimensions that are linear

Capacity of a line when d=2

Some Separable Cases



f(5,2)=0.5, i.e., half the dichotomies are linear Capacity *is achieved at* n=2d+1=5

Some Non-separable Cases

VC Dimension = d+1=3

Possible method of training SVM

• Based on modification of Perceptron training rule given below

$$\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_1, \mathbf{y}_2, \dots$$

$$\mathbf{a}(1)$$
 arbitrary $\mathbf{a}(k+1) = \mathbf{a}(k) + \mathbf{y}^k$ $k \ge 1$

```
Algorithm 4. (Fixed-Increment Single-Sample Perceptron)
begin initialize a, k ← 0
do k ← (k + 1) mod n
if y<sup>k</sup> is misclassified by a then a ← a + y<sup>k</sup>
until all patterns properly classified
return a
end
```

Instead of all misclassified samples, use worst classified samples

Support vectors are worst classified samples

- Support vectors are
 - training samples that define the optimal separating hyperplane
 - They are the most difficult to classify
 - Patterns most informative for the classification task
- Worst classified pattern at any stage is the one on the wrong side of the decision boundary farthest from the boundary
- At the end of the training period such a pattern will be one of the support vectors

- Finding worst case pattern is computationally expensive
 - For each update, need to search through entire training set to find worst classified sample
 - Only used for small problems
 - More commonly used method is different

Generalization Error of SVM

- If there *are n* training patterns
- Expected value of the generalization error rate is bounded according to

$$\left[\mathcal{E}_n[P(error)] \leq \frac{\mathcal{E}_n[\text{No. of Support Vectors}]}{n}\right]$$

Expected value of error \leq expected no of support vectors/n

- Where expectation is over all training sets of size *n* (drawn from distributions describing the categories)
- This also means that error rate on the support vectors will be *n* times the error rate on the total sample

Leave one out bound

- If we have *n* points in the training set
- Train SVM on *n-1* of them
- Test on single remaining point
- If the point is a support vector then there will be an error
- If we find a transformation ϕ
 - that well separates the data, then
 - expected number of support vectors is small
 - expected error rate is small