
Linear Discriminant Functions

• Linear Discriminant Functions and Decisions Surfaces
• Generalized Linear Discriminant Functions
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Introduction

• Parametric Methods
• Underlying pdfs are known 
• Training samples used to estimate pdf parameters  

• Linear Discriminant Functions
• Forms of discriminant functions are known
• Similar to non-parametric techniques
• Sub-optimal, but simple to use
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Linear discriminant function definition

A linear combination of components of x

g(x) = wtx + w0 (1)

where 
w is the weight vector
w0 the bias or threshold weight

In general there are c such functions
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Two-category case
• With a discriminant function of the form (1) use:
• Decide ω1 if g(x) = wtx + w0 > 0 and 

ω2 if  g(x) = wtx + w0 < 0
⇔
Decide ω1 if wtx > -w0 and 

ω2 otherwise
If g(x) = 0 then x is assigned to either class

Each unit is shown as having inputs and 
outputs. The input units exactly output the
same values as the inputs (except the bias 
unit which outputs a constant 1). 
The output unit emits a 1 if the sum of its 
weighted inputs is greater than 
zero and -1 otherwise

Simple Linear Two Category Classifier
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Hyperplane

• The equation g(x) = 0 defines the decision surface that separates 
points assigned to the category ω1 from points assigned to the 
category ω2

• When g(x) is linear, the decision surface is a hyperplane

• If x1 and x2 are both on the hyperplane then

• Or w is normal to any vector lying on the hyperplane
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Hyperplane Geometry
• Positive side, R1,  if g(x) > 0
• Negative side, R2, if g(x) < 0
• Algebraic measure of distance 

of x to hyperplane
• Define
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• Distance of origin to hyperplane

• Origin is on positive side if w0 > 0 otherwise on negative 
side

• Orientation of hyperplane is determined by normal 
vector w

• If  w0=0 then g(x) has homogeneous form wtx and
hyperplane passes through the origin

• Location of hyperplane is determined by the bias w0
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Multicategory Case

• Regard the problem as c two-class problems
• Two methods

1. Separate points assigned to ωi from those not assigned 
to ωi

2. Use one hyperplane for each pair for classes
Will need c(c-1)/2 discriminant functions
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Using dichotomies for four-class problem

Decision Boundaries Hij

Dichotomies
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Multi-category case: Linear Machine

• We define c linear discriminant functions

• and assign x to ωi if gi(x) > gj(x) ∀ j ≠ i; in case of ties, 
the classification is undefined

• In this case, the classifier is a “linear machine”
• A linear machine divides the feature space into c decision 

regions, with gi(x) being the largest discriminant if x is in the 
region Ri
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Two class case of Linear Machine

• For two contiguous regions Ri and Rj
• Boundary that separates them is a portion of hyperplane Hij

defined by:
gi(x) = gj(x)

• (wi – wj)tx + (wi0 – wj0) = 0
• wi – wj is normal to Hij

• Distance from x to Hij is
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Linear Machine Boundaries
for 3 and 5-class problems
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Linear Machines and Unimodal
Distributions

• It is easy to show that the decision regions 
for a linear machine are convex, this 
restriction limits the flexibility and accuracy 
of the classifier

• Every decision region is singly connected
• Suitable for Unimodal distributions
• Sometimes can be made to give good results 

for multimodal distributions as well
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Generalized Linear Discriminant Functions

• Linear Discriminant functions can be written as

• Adding additonal terms we get quadratic discriminant
functions
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Polynomial Discriminant Functions
• Continue to add terms such as

• wijkxixjxk
• Leads to generalized linear discriminant function

• a is a d^ dimensional weight vector
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φ function

• Functions yi(x) are called φ-functions
• They map points in d-dimensional space into points in d^-

dimensional space
• Homogeneous discriminant function aty separates points 

by a hyperplane that passes through origin in transformed 
space

• Problem is one of finding a Homogeneous linear 
discriminant function 
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Quadratic as Generalized LDF

• Example
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Transforming 1-d to 3-d

Error in figure:
Plane should 
pass through 
origin

Mapping   y = (1, x, x2)t takes a line and transforms it to a parabola in 3-d.
A plane splits the resulting y-space into regions corresponding to two categories 
which gives a nonsimply connected decision region in x-space

y1

y2

y3
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Case of a=(-1,1,2)

2-d input space x is mapped through a polynomial function f to y.
Here the mapping is  y1= x1,   y2= x2 and   y3 α x1x2
A linear discriminant in this transformed space is a hyperplane which cuts the surface.
Points on the positive side of H correspond to ω1 and those beneath it correspond to ω2.
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Augmented Feature Vector

where x0=1

Task is to find a single weight vector
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Augmented weight vector a (at the origin).
Set of points for which aty = 0 is a plane perpendicular to a and passing through 
the origin of y-space, as indicated by red disk.   Such a plane need not pass 
through origin of 2-d feature space as illustrated by dashed  decision boundary at 
top of box.
Thus there exists an augmented weight vector a that will lead to any straight 
decision line in x-space.

3-d augmented feature space y
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