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Several algorithms have been described in the literature for protein identification by
searching a sequence database using mass spectrometry data. In some approaches,
the experimental data are peptide molecular weights from the digestion of a protein by
an enzyme. Other approaches use tandem mass spectrometry (MS/MS) data from
one or more peptides. Still others combine mass data with amino acid sequence data.
We present results from a new computer program, Mascot, which integrates all three
types of search. The scoring algorithm is probability based, which has a number of
advantages: (i) A simple rule can be used to judge whether a result is significant or not.
This is particularly useful in guarding against false positives. (ii) Scores can be com-
pared with those from other types of search, such as sequence homology. (iii) Search
parameters can be readily optimised by iteration. The strengths and limitations of prob-
ability-based scoring are discussed, particularly in the context of high throughput, fully

automated protein identification.
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1 Introduction

Mass spectrometry (MS) has become the method of
choice for the rapid identification of proteins and the char-
acterisation of post-translational modifications [1]. Several
algorithms and computer programs have been described
in the literature for protein identification by searching a
sequence database using mass spectrometry data. Since
the first publications on this topic appeared in 1993, there
have also been a number of reviews. A recent article by
Yates [2] provides a concise overview of the subject and
comprehensive references to the literature. In some ap-
proaches, the experimental data are peptide molecular
weights from the digestion of a protein by an enzyme (a
peptide mass fingerprint) [3-7]. Other approaches use
MS/MS data from one or more peptides (an MS/MS ions
search) [8]. Still others combine mass data with explicit
amino acid sequence data or physicochemical data which
infer sequence or composition (a sequence query) [9].

The general approach in all cases is similar. The experi-
mental data are compared with calculated peptide mass
or fragment ion mass values, obtained by applying appro-
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priate cleavage rules to the entries in a sequence data-
base. Corresponding mass values are counted or scored
in a way that allows the peptide or protein which best
matches the data to be identified. If the “unknown” protein
is present in the sequence database, then the aim is to
pull out the correct entry. If the sequence database does
not contain the unknown protein, then the aim is to iden-
tify those entries which exhibit the closest homology,
often equivalent proteins from related species. While sev-
eral algorithms assign scores to matches, we are not
aware of any systematic attempts to report scores which
accurately reflect true probabilities. The advantages of
probability-based scoring include: (i) A simple rule can be
used to judge whether a result is significant or not. This
is particularly useful in guarding against false positives.
(if) Scores can be compared with those from other types
of search, such as sequence homology. (iii) Search
parameters can be readily optimised by iteration.

We present results from a new search engine, Mascot,
which incorporates probability-based scoring. All three
types of search are supported: peptide mass fingerprint,
sequence query, and MS/MS ions search. Any FASTA
format sequence database can be searched, nucleic acid
databases being translated in all six reading frames on
the fly. The program, which is threaded for parallel execu-
tion on multiprocessor machines and clusters, has been
ported to Microsoft Windows NT, SGI Irix, Sun Solaris,
and DEC Unix, and can be freely accessed across the
World Wide Web at Uniform Resource Locator (URL)
http://www.matrixscience.com.
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2 Materials and methods

2.1 Sample preparation and mass spectrometry

Protein bands were stained with silver or Coomassie Bril-
liant Blue, excised from an SDS-PAGE gel, and digested
overnight with trypsin [10]. Aliquots of 0.5—-1 uL were gen-
erally sampled directly from the digest supernatant for MS
fingerprint analysis using a TofSpec 2E MALDI time-of-
flight (TOF) instrument (Micromass, Manchester, UK).
The remaining digested peptides (>90% of total digest)
were then reacted with N-succinimidyl-2-morpholine ace-
tate (SMA) in order to enhance b ion abundance and facil-
itate sequence analysis by MS/MS [11, 12]. Derivatised
peptides were eluted with a single step gradient to 75% v/
v methanol/0.1% v/v formic acid and fragmented by low-
energy collision-activated dissociation using an LCQ ion-
trap MS (ThermoQuest, San Jose, CA, USA) fitted with a
nano-electrospray source [13, 14].

2.2 Database search engine

The search engine used in this work, Mascot, is a devel-
opment of the MOWSE computer program [6, 15]. Signifi-
cant differences between MOWSE and Mascot are the
addition of probability-based scoring, support for match-
ing MS/MS data, and the removal of prebuilt indexes.
Mascot works directly from the FASTA format sequence
databases which, for maximum search speed, may be
compressed and mapped into memory. For interactive
searching, the user interface to Mascot is a web browser,
and searches are defined using hypertext mark-up lan-
guage (HTML) forms. A form may be used to enter search
parameters and data and may also specify a local text file
to be uploaded to the server. This uploaded file can con-
tain both experimental data and search parameters. The
Mascot search engine, written in ANSI C, is executed as
a common gateway interface (CGl) program, (Fig. 1). On
completion of a search, it calls a Perl CGl script which
reads the results file and returns an HTML report to the
client browser. Links to additional CGI scripts provide
more detailed views of the results.

MS data are submitted to Mascot in the form of peak lists.
That is, lists of centroided mass values, optionally with
associated intensity values. In the case of MS/MS data,
peak detection is also required in the chromatographic
dimension, so that multiple spectra from a single peptide
are summed together and spectra from the chromato-
gram baseline are discarded. Accurate and efficient data
reduction is a critical factor in getting the best out of the
search engine. Figure 2 illustrates the search form for a
peptide mass fingerprint. Although Mascot accepts all
three types of searches, putting the parameters for all
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search types into a single form was found to make it too
complex. The fields are mostly self-explanatory, and fur-
ther details can be found in the web site help text.
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Figure 1. Functional block diagram of web-based inter-
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2.3 Probability-based scoring

The fundamental approach is to calculate the probability
that the observed match between the experimental data
set and each sequence database entry is a chance event.
The match with the lowest probability is reported as the
best match. Whether the best match is also a significant
match depends on the size of the database. To take a
simple example, the calculated probability of matching six
out of ten peptide masses to a particular sequence might
be 107°. This may sound like a promising result but, if the
real database contains 10° sequences, several scores of
this magnitude may be expected by chance. A widely
used significance threshold is that the probability of the
observed event occurring by chance is less than one in
twenty (p < 0.05). For a database of 10° entries, this
would mean that significant matches were those with
probabilities of less than 5 X 1078, The probability for a
good match is usually a very small number, which must
be expressed in scientific notation. This can be inconven-
ient, so we have adopted a convention often used in
sequence similarity searches, and report a score which is
-10Log10(P), where P is the probability. This means that
the best match is the one with the highest score, and a
significant match is typically a score of the order of 70.

2.4 Testing

Pearson [16] has described how the performance of bio-
logical sequence comparison algorithms should be
judged on two criteria: (i) sensitivity, the ability to calculate
high-ranking scores for distantly related sequences; and
(i) selectivity, the ability to calculate low-ranking scores
for unrelated sequences. The performance of algorithms
for protein identification based on MS data can be judged
on a similar basis: (i) sensitivity, the ability to make a cor-
rect identification using weak or noisy data; and (ii) selec-
tivity, the ability to calculate low-ranking scores for spuri-
ous, random matches. Judging the sensitivity and
selectivity of the algorithms in Mascot can only be done
with knowledge of the “correct” answer. While this could
be approached by using artificial data sets, all the exam-
ples given here use real experimental data. We do not
believe that calculated data can provide a valid basis for
evaluating sensitivity and selectivity. Factors such as sys-
tematic calibration errors, nonspecific enzyme behaviour,
gas-phase ion fragmentation kinetics, contributions from
contaminating proteins, instrument artefacts, unsuspect-
ed modifications, etc., are extraordinarily difficult to simu-
late with any realism. It is also important to test the algo-
rithms against the widest possible variety of data sets.

As far as statistical significance is concerned, the validity
of the probabilities calculated by Mascot can be tested by
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repeating a search against a randomised sequence data-
base. In this work, we use a database of representative
sequences [17]. That is, a database in which the overall
amino acid composition, the number of entries, and the
distribution of entry lengths are identical to a real data-
base, but with random sequences. No attempt has been
made to preserve nearest-neighbour frequencies. An-
other valuable check is to submit the same search to mul-
tiple search engines and compare the results. Details of
other search engines can be found at the following URLs:
MassSearch [4] http://vinci.inf.ethz.ch/ServerBooklet/
MassSearchEx.html; MOWSE [6] http://srs.hgmp.mrc.ac.
uk/cgi-bin/mowse; Expasy tools [18] http://www.expa-
sy.ch/tools/; PeptideSearch [9] http://www.mann.embl-
heidelberg.de/Services/PeptideSearch/PeptideSearchin
tro.html; Protein Prospector [19] http://prospector.ucs-
f.edu/; Prowl [20] http://prowl.rockefeller.edu/PROWL/
prowl.html; and Sequest [8] http://thompson.mbt.wa
shington.edu/sequest/.

2.5 The model

A critical step in any statistical analysis is the definition of
an appropriate model. An ideal model would faithfully rep-
resent the underlying physical system. Unfortunately, the
physical processes which determine the observed data in
a protein identification experiment are of great complexity,
and only the most important factors can be included in
the model. In addition, there are some physical factors
which can be modelled, but which result in overly com-
plex expressions, or mathematical series without closed
forms. Even with powerful computer hardware, simple
and efficient code is essential in order to complete a
search of a large database in a reasonable amount of
time. This means that it is sometimes necessary to ignore
a physical factor in the interests of throughput even
though, in principal, it could be included in the model.

2.5.1 Proteolysis

MOWSE [6] was the first protein identification program to
recognise that the relative abundance of peptides of a
given length in a proteolytic digest depends on the lengths
of both peptide and protein. For trypsin, cleaving after
arginine and lysine unless followed by proline, approxi-
mately 10% bonds are cleavage sites. In a protein of infin-
ite length, the fractional abundance of ideal trypsin limit
peptides of length N residues is simply A(1-A)N"', where
A is the fractional abundance of bonds which are cleav-
age sites. This distribution is shown in Fig. 3 for three dif-
ferent cleavage agents.

Of course, real proteins are not of infinite length. Finite
proteins have an “end effect” which increases the abun-
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Figure 3. Calculated peptide length distributions for
three cleavage agents of differing specificity acting on a
protein of infinite length: chymotrypsin, trypsin, and cy-
anogen bromide
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Figure 4. Calculated peptide length distributions for tryp-
tic limit peptides from proteins of length 10, 20 and 200
residues

Fractional Abundance

dance of short peptides and dramatically increases the
probability of finding the peptide equal in length to the pro-
tein (i.e., no cleavage). Figure 4 shows the fractional
abundance of peptides as a function of their length for
trypsin acting on proteins of length 10, 20, and 200 resi-
dues.

The next level of complexity in modelling proteolysis is to
allow for missed cleavage sites. Missed cleavages occur
for a number of reasons. One mechanism, which we are
unable to include in the model, is steric hindrance, making
a cleavage site inaccessible to the enzyme. Another fac-
tor, which can significantly influence cleavage probability,
is the identity of the residue adjacent to the cleavage site.
For example, trypsin is less likely to cleave a substrate
when there is a basic residue (arginine, lysine) adjacent
to the cleavage site [21, 22]. Although this effect was
included in the original MOWSE model, it has been
dropped from Mascot in the interests of simplicity and
execution speed. The final cause of missed cleavages is
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simple kinetics. Either the enzyme-to-substrate ratio is
too low or the time allowed is insufficient for digestion to
proceed to completion. This factor is included in the Mas-
cot model by allowing the user to specify that a peptide
may include missed cleavage sites up to an arbitrary max-
imum number.

2.5.2 Modifications

Post-translational modifications, and modifications due to
chemical derivatisation, contribute greatly to the complex-
ity of mass-based searching. Often, there is uncertainty
as to whether a particular modification is present or not.
Even if present, a modification may not be quantitative.
For example, a peptide may contain some oxidised and
some nonoxidised methionine residues. Three classes of
modification can be identified: (i) Modifications which
affect a specific residue, only when that residue is at a
peptide terminus (e.g., conversion of N-terminal gluta-
mine to pyro-glutamic acid); (ii) modifications which affect
a peptide terminus, independent of the identity of the resi-
due (e.g., esterification of the C-terminus); (i) modifica-
tions which affect a residue independent of its position in
the peptide (e.g., oxidation of methionine). Mascot sup-
ports all three classes of modification, which may be
specified as being quantitative or nonquantitative. How-
ever, the number of nonquantitative modifications is lim-
ited to a maximum of four. This is because nonquantita-
tive modifications substantially increase the number of
calculated mass values, and so raise the level of random
matches. This makes it inadvisable to specify a large
number of nonquantitative modifications in a search; bet-
ter to risk missing one or two peptides than compromise
specificity on the remainder.

Matching MS/MS data from a peptide which contains non-
quantitative modifications raises an interesting issue.
Consider a peptide which contains three methionine resi-
dues, one of which is oxidised. Assuming that all three
methionines are equally susceptible to oxidation, the
experimental MS/MS spectrum will contain contributions
from three different permutations of oxidised and nonoxi-
dised methionines. All three permutations have the same
molecular weight, but give rise to differing MS/MS spec-
tra. Thus, the Mascot model attempts to match the experi-
mental MS/MS data to the sum of the contributions from
all possible permutations of nonquantitative modifications
which fall within the mass error window specified for the
peptide. Some nonquantitative modifications, such as
enzymatic phosphorylation, are likely to be site-specific.
In such cases, with good data, a more thorough matching
procedure which included individual permutations and
combinations of permutations might be expected to reveal
the location of the modified residues. However, this has
not yet been incorporated into the Mascot code.
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Mascot does not attempt to make use of the information
concerning known post-translational modifications and
processing present in database annotations. The feasibil-
ity of reading SWISS-PROT annotations has been dem-
onstrated by the Multildent program [18]. This facility,
though undoubtedly useful when searching SWISS-
PROT and other well-annotated protein databases, does
not eliminate the need to search for nonquantitative modi-
fications. Also, database annotations cannot help with
modifications due to sample handling, such as oxidation
of methionine, or acrylamide adduction to cysteine. In any
case, the bulk of database entries are translated from
nucleic acid sequences, and so cannot include informa-
tion on experimentally observed modifications.

2.5.3 Mass accuracy

Mascot, in common with most other search engines, re-
quires the user to provide an error window on the meas-
ured mass values. This is a particularly important parame-
ter. Specifying a window which is too large will increase
the level of random matches and so reduce discrimina-
tion. However, specifying too narrow a window is much
worse, because valid matches will be missed. The Mascot
model assumes that mass measurement errors should be
treated as being uniformly distributed across the specified
error window. Although the random component of the
error might be expected to follow some kind of quasi-nor-
mal distribution about zero, there is also a systematic
component, due to calibration error, which will result in
values being high or low as a function of mass. Thus, if
the estimated error window is £ 0.25 Da, then a match
with an error of 0.2 Da is assumed to be “as good as” one
with an error of 0.02 Da. If this was not the case, then
mass error could be treated as a variable in the probability
calculation, and used to select the set of matches with the
lowest probability [4].

The Mascot model further assumes that mass values are
smoothly distributed, which is not actually the case. As
described by Mann [23], the limited elemental composi-
tion of proteins means that peptide mass values are clus-
tered around discrete values, separated by intervals of
1.00048 Da (monoisotopic). In consequence, for accurate
data, the number of random matches is not proportional
to the width of the error window once the error window
becomes comparable in size, or smaller than one Dalton.
To obtain well-behaved scores from accurate data, the
width of error window is treated as asymptotically
approaching + 0.25 Da. Thus, for perfectly accurate data,
the score of the best match would tend to a maximum as
the width of the error window was reduced to zero. Note
that this is distinct from the accuracy with which mass val-
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ues are calculated to determine if there is a match, cur-
rently set to 1/65536 Da.

2.5.4 Average amino acid composition

Mascot calculations are based on the average amino acid
composition of the Owl database [24]. For example, the
length of a peptide for scoring purposes is estimated by
dividing its molecular mass by 111. Although small differ-
ences in average amino acid composition are found be-
tween the major databases, the consequences for the
scoring scheme are negligible.

2.5.5 MS/MS fragment ion series

MS/MS fragment ion data are matched to calculated val-
ues for user-selected ion series [25, 26]. The choice of
ion series is important. Failure to select a series which is
well represented in the experimental data will mean that
potential matches are missed. Conversely, selection of a
series which is not well represented in the data simply
contributes to the tally of random matches. The ion series
supported by Mascot are listed in Table 1. There are three
sets of series for common experimental conditions, while
any selection of the nine supported series can be saved
and used as a custom set. Several common types of
instrument have lower mass accuracy for MS/MS frag-
ments than for intact peptides. A typical mass error win-
dow for MS/MS fragments might be + 0.5 Da. Since each
ion series contributes one calculated mass value per resi-
due, the probability of finding a random match between a
calculated and experimental value for a = 0.5 Da error
window is approximately 1% per ion series. Unless the
MS/MS data are exceptionally clean, selecting more than
four ion series can only bring diminishing returns. High
charge state precursors pose a problem, because there is
the potential for multiple charge states for each ion series.
Matching fragment ions with charge states greater than
2" should probably be limited to data from instruments
capable of determining and specifying the charge states
of the fragment ions. Otherwise, the calculated values will
tend to swamp the mass scale, and discrimination will be
lost.

2.5.6 Protein molecular mass

Peptide mass fingerprint algorithms which simply count
matches rely on the user to specify a molecular mass
for the protein. Otherwise, the best match will always
be to the most massive proteins, such as titin (3
MDa). Specifying the molecular mass of the intact pro-
tein in Mascot is not normally necessary, because the
score is a true probability that the match is random,
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Table 1. The MS/MS fragment ion series supported by

Mascot
lon  lonmass? Low High Custom
type energy energy PSD  weighting

CID CID factor

a [NJ+[M]-CO 1 1 a
a a-NH3 1 ad
& a-H,0
a“  (a+H)2 1 O
b [INJ+{M] 1 1 1 n
b* b-NH; 1 ]
b° b-H,0
b (b+H)2 1 1 ]
c [NJ+[M]+NH3
d a-partial side chain
v y-complete side chain
w Zz-partial side chain
X [CI+[M]+CO
y [Cl+[MI+H, 1 1 1 n
y y-NH3 u
y y-H:0
vy (y+H)2 1 1 a
z [C]+[M]-NH

a) [N], mass of N-term group

[C], mass of C-term group

[M], mass of the sum of the neutral amino acid residue
masses

which takes protein length into account. If there are
valid reasons to specify the protein molecular mass,
simply restricting matches to database entries based
on the calculated mass of the entire sequence is
highly inadvisable, because many of the sequence
database entries are for the least processed form of a
protein. For example, the SWISS-PROT entry for
bovine insulin, INS_BOVIN, is actually the sequence
of the precursor protein including signal and connect-
ing peptides. This adds up to a molecular mass of 11
394 Da, so that a search based too tightly around an
experimental measurement of the molecular mass of
this protein (5734 Da) would fail to find a correct
match.

In Mascaot, if a protein molecular mass is specified, this is
applied as a sliding window on the database sequences,
as first suggested by Yates [7]. For example, if the protein
molecular mass was specified as 20 kDa then, in any
database entry which exceeds this mass, the code looks
for the highest scoring set of matches which occur within
a 20 kDa window. In this way, a protein can be correctly
scored even though it is substantially shorter than the
database entry, for example a proteolytic fragment of a
larger protein.
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2.5.7 Making use of peak intensity values

Intensity information is ignored in a peptide mass finger-
print. The dominant ionisation techniques, MALDI and
ESI, are far from quantitative. Peak intensities depend
strongly on the physical and chemical properties of the
analytes, so that it would be rash to assume that the more
intense peaks were more “valid” than the weaker ones.
While it is true that peaks below a certain intensity are
more likely to be random noise, it has been our experi-
ence that this is not a serious problem in data sets submit-
ted for peptide mass fingerprint searches. Large peaks
are as likely to remain unassigned as small ones. In other
words, the “noise” is mainly chemical (peptides from other
proteins, nonspecific enzyme cleavage, unsuspected
modifications, etc.) rather than random (shot noise, elec-
trical and electronic artefacts, etc.).

In the case of MS/MS spectra, relative peak intensities
within a fragment ion series are a function of several com-
plex processes, including composition-based fragmenta-
tion kinetics, parent ion activation parameters, and mass
analyser artefacts [26]. Because MS/MS spectra tend to
exhibit much higher levels of apparently random noise,
often a peak at every mass, it becomes essential for
peaks to be selected on the basis of intensity. The Mascot
code iteratively searches for the set of the most intense
peaks which yields the highest score. At least, in the case
of an MS/MS spectrum, we know what an ideal spectrum
should look like: a uniform ladder of peaks for each frag-
ment ion series. This suggests the possibility of correcting
for mass analyser artefacts by normalising peak intensi-
ties so as to approach an ideal ladder spectrum prior to
intensity-based peak selection. This is standard practice
in library search algorithms for electron impact mass
spectra, where a typical approach is to select the most
intense peak in each 14 Da mass interval. Intensity nor-
malisation is a direction that will be pursued in future
work.

2.5.8 Nucleic acid translation

Nucleic acid databases are translated on the fly in all six
reading frames. In most cases, the databases of interest
contain expressed sequence tags (ESTs) [27]. For EST
searches, the code does not look for a start codon, but
begins translation at the start of the entry. If it finds a stop
codon, this is treated as a gap, and translation is restarted
at the next codon. Codons containing base ambiguities
sometimes translate to nonambiguous amino acid resi-
dues. For example, ATH, where His A or C or T, trans-
lates to isoleucine. The current version of Mascot does
not attempt to identify such cases; all codons which
include ambiguities are translated to the unknown amino
acid residue, X.
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Table 2. Syntax for specifying amino acid sequence
information in a Mascot search

Prefix Meaning Example

b- N- > C-sequence seq(b-DEFG)
y- C- > N-sequence seq(y-GFED)
*- Orientation unknown seq(*-DEFQG)
n- N-terminal sequence seq(n-ACDE)
c- C-terminal sequence seq(c-FGHI)

If the sequence orientation is unknown, Mascot searches
for both senses. If no prefix is specified, the default is b-.

2.5.9 Sequence query

In a sequence query, amino acid sequence or compo-
sition data may be associated with one or more pep-
tide masses [9]. If such information is present, it is
treated as a rigorous filter on the candidate sequences.
Ambiguous sequence or composition data can be used
(in a manner similar to a regular expression search in
computing) but it still functions as a filter, not a proba-
bilistic match of the type found in a BLAST or FASTA
homology search. The sequence information is speci-
fied in standard one-letter code, preceded by a prefix
as outlined in Table 2, to indicate in which direction
the sequence should be read.

All examples in Table 2 would match a peptide with
the sequence ACDEFGHI. Note also that y-GFED is
written C-term to N-term, whereas c-FGHI is written
N-term to C-term. An unknown amino acid may be
indicated by an ‘X’. More than one amino acid may
be specified for a position by putting them between
square brackets. A line may contain several sequence
information qualifiers.

Amino acid composition data may be specified by a num-
ber, followed by one or more amino acid codes in square
brackets. An asterisk means at least one. For example
1234 comp(2[H]O[M]3[DE]*[K]) indicates a peptide which
contains two histidines, no methionines, a total of three
acidic residues (glutamic or aspartic acid) and at least
one lysine. Note that ‘X’ is not meaningful in a composi-
tion query and is not allowed.

The code does not make exhaustive checks on the valid-
ity of combinations of multiple sequence and composition
qualifiers. For example, the following would all be
accepted, even though they are not reasonable: (i) speci-
fying (c-ACD) for a tryptic digest, even though the C-ter-
mini of all but one peptide per protein can only be K or R;
(i) conflicts between sequence and composition qualifi-
ers, e.g., seq(*-ACD) comp(0[C]); and (iii) duplicate se-
quence qualifiers, e.g., seq(c-ACD) seq(*-ACD).
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3 Results and discussion

Figures 5-7 illustrate typical result reports. (The experi-
mental details of this search are discussed in Section
3.3). At the top of the page are a few lines to identify the
search uniquely: title, date, user name, etc. The database
is identified with either a release number or a date stamp.
Following the header is a histogram of the score distribu-
tion for the 50 best-matching proteins. In this particular
example, scores greater than 68 were reported to be sig-
nificant. That is, the chance of a random match getting a
score of 68 is 1 in 20, (p <0.05). An (optional) overview
table provides an animated summary of the results, and is
the starting point for “drilling down” into more detailed
views. Search results are multidimensional, and cannot
be adequately represented by a single, flat table.

The next section of the result report contains a tabular
summary of the matching proteins. For each protein, the
first line contains the accession number (linked to the cor-
responding protein view), the protein molecular mass,
and the overall score. This is followed by the FASTA title
line, then a table summarising the matched peptides. If a
search includes variable modifications, any found in a
peptide are listed after the sequence string. At the end of
the report, the search parameters are summarised.

By following hyperlinks from the main report page, more
detailed reports are available. The Protein View report
(Fig. 6) includes the formatted sequence of the protein in
1-letter code with matched peptides highlighted in bold,
red type.

If an enzyme has been specified, this is followed by a
table of the peptides expected from the digest, including
all partials up to the limit specified by the missed clea-
vages parameter. The matched peptides are shown in
bold, red type, together with a link to the corresponding
peptide view. If no enzyme was specified, this table con-
tains only the matched peptides. At the bottom of the
page, the annotation text from the full database entry is
reproduced. The Peptide View report (Fig. 7) for a
matched peptide displays a mass spectrum in which all of
the matched fragment ions are labelled. The matched
fragment ions are also shown in tabular format below the
spectrum. As in other views, the sequence is shown in 1-
letter code and matched values are highlighted in bold,
red type. Only the ion series which were included in the
search (i.e., had a non-zero weighting) are included.

3.1 Peptide mass fingerprint

An in-gel tryptic digest of a protein purified from a thermo-
philic bacterium was analysed by MALDI-TOF-MS. The
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User : JsC

Email : jcottrell@matrixscience.com

Search title : MS/MS example

Database : NCBInr 19990627 (392023 sequences; 119918970 residues)
Timestamp : 2 Aug 1999 at 17:24:40 GMT

Top Score
Probability Based Mowse Score

Score is -10*Log(P), where P is the probability that the observed match
is a random event. Scores greater than 68 are significant (p<0.05).

Probability Based Mowse Score

Overview Table

Click on column header to jump to entry in results list.

Move mouse over any indicator to highlight identical peptides.
Click on an indicator to see details of individual match.

Use check boxes to select sub-set of queries for new search.

Mouse over: | -Query-

-Accession- | -Sequence-

1[27374]576]7(8]9[10[1[12] 19720
0 ° 2 A0
=00 elele N0
olo o | (o/oofe °

Electrophoresis 1999, 20, 3551-3567

: 575 for gi|3786056, (X85729) granule-associated protein [Ralstonia eutropha]

oo (oo oo
|@le o0
e oo [eleje | |o
I.Eglgqt AI! ] IW_SE‘alect None | [»WV_SWearch Selected
Index
Accession Mass Score Description
1. gi|3786056 20081 575 (X85729) granule-associated protein [Ralstonia eutropha
2. gi|1360954 24090 443 granula associated protein 24 - Alcaligenes eutrophus Figure 5. Example of the main
3. gi|1478425 3072 152 24 kda polyhydroxyalkanoic acid granule-associated proteins/GA24 h
result report from an MS/MS
ions search of 20 peptides from
. an in-gel tryptic digest of a pro-
Results List tein from Ralstonia eutropha

1. gi|3786056 Mass: 20081 Score: 575
(X85729) granule-associated protein [Ralstonia eutrophal]
Observed Mr (expt) Mr(calc) Delta Start End Mi

ss TIons
551.30 1100.58 1100.56 0.03 173 - 182 0 -
615.80 1229.58 1228.63 0.95 100 - 110 0
633.80 1265.58 1264.59 0.99 43 - 53 0
641.90 1281.78 1280.77 1.01 33 - 42 0
663.90 1325.78 1324.73 1.05 111 - 121 0
679.30 1356.58 1355.69 0.89 100 - 110 0 -
697.30 1392.58 1391.66 0.93 43 - 53 0 64
705.30 1408.58 1407.83 0.75 33 - 42 0 36

spectrum, internally calibrated on two trypsin autolysis
peaks, is shown in Fig. 8. Peak detection yielded 72 mass
values. Searching all 72 values against Owl release 31.3
(290 043 entries), without any restriction on the protein
mass, a mass tolerance of = 200 ppm, and no modifica-
tions, matched 36 masses to UVRB_THETH, an excinu-
clease subunit from Thermus aquaticus. Although only

ARAQOASATAR
VAEAQLAEGSK
TSFAEGVDNAK
LVELNLQVVK
NVQALVENLAK
VAEAQLAEGSK 1 SMA (K)
TSFAEGVDNAK 1 SMA (K)
LVELNLQVVK 1 SMA (K)

against the NCBInr database.
Peptide mass tolerance + 2 Da,
fragment ion tolerance = 1 Da,
no restriction on protein mass,
one missed cleavage allowed.
The peptides had been deriva-
tised with SMA.

half the values have been matched, the score of 359
gives an extremely high level of confidence that this iden-
tification is correct. The second best matching protein
received a score of 51, well below the significance thresh-
old of 67 for a database of this size. When the identical
seach was repeated against a random database of the
same size, the highest score was 63. Two subsets of
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Protein View

Match to gi|3786056: (X85729) granule-associated protein [Ralstonia eutrophal]

Nominal mass of protein (M,): 20081.57

Fixed modifications: SMA (N-Term)

Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Matched peptides shown in Bold Red

1 MILTPEQVAA AQKANLETLF GLTTKAFEGV EKLVELNLQV VKTSFAEGVD
51 NAKKALSAKD AQELLAIQAA AVQPVAEKTL AYTRHLYEIA SETQSEFTKV
101 AEAQLAEGSK NVQALVENLA KNAPAGSEST VAIVKSAISA ANNAYESVQK
151 ATKQAVEIAE TNFQAAATAA TKAAQQASAT ARTATAKKTT AA

| SortPeptidesBy | @Residue Number QlIncreasing Mass O Decreasing Mass

Mr Miss Sequence

3559

1 - 13 1525.82 0 MILTPEQVAAAQK (Ions score 68)

1 - 13 1652.88 0 MILTPEQVAAAQK 1 SMA (K) (Ions score 72)

1 - 25 2814.52 1 MILTPEQVAAAQKANLETLFGLTTK

14 25 1433.78 0 ANLETLFGLTTK

14 - 25 1560.84 0 ANLETLFGLTTK 1 SMA (K) (Ions score 78)

14 - 32 2194.15 1 ANLETLFGLTTKAFEGVEK

26 32 905.45 0 AFEGVEK

26 42 2041.15 1 AFEGVEKLVELNLQVVK

33 - 42 1280.77 0 LVELNLQVVK (Ions score 86)

33 ~ 42 1407.83 0 LVELNLQVVK 1 SMA (K) (Ions score 36)

33 53 2400.29 1 LVELNLQVVKTSFAEGVDNAK

43 - 53 1264.59 0 TSFAEGVDNAK (Ions score 0)

43 - 53 1391.66 0 TSFAEGVDNAK 1 SMA (K) (Ions score 64) Figure 6. Examp|e of a protein
43 54 1392.69 1 TSFAEGVDNAKK . .

54 - 54 273.17 0 K view report (hit 1 from the
54 - 59 743.45 1 KALSAK search shown in Fig. 5)

these mass values were selected using the RAND() func-
tion in a Microsoft Excel spreadsheet and all three sets
(72, 24, and 8 values) searched against Owl using identi-
cal conditions. Each search was then repeated several
times with progressively wider mass tolerances until the
top scoring match was no longer correct.

Figure 9 shows how the score for the UVRB_THETH falls
steadily as the full width of the mass tolerance window is
increased. For the full set of 72 values, of which approxi-
mately half match, the mass tolerance can be opened out
to an astonishing + 0.5% before the score drops into the
region of insignificance. The set of 24 values, of which 13
match, maintains a significant score down to = 0.1%. The
set of eight values, of which five match, never achieves a
significant score, even at the tightest mass tolerance of
+ 0.02%. Note that UVYRB_THETH was the highest scor-
ing protein for all the data points plotted in Fig. 9, even
though some scores are below the significance threshold.
A score of less than the significance threshold does not
mean that an answer is wrong, only that one cannot be
confident in the identification without additional data or
other supporting evidence.

This example illustrates that mass accuracy in a peptide
mass fingerprint is not as critical as might be expected,
provided that a reasonable number of mass values can
be matched. In the context of high throughput proteomics,

one should aim to obtain a representative set of mass val-
ues at a mass accuracy which can be achieved under
routine conditions using external calibration. This will
allow the majority of samples to be identified rapidly and
inexpensively, conserving resources for more intractable
samples. There is no “correct” choice for the significance
threshold. In a fully automated context, where the conse-
quences of a false positive are more of a concern than
routing a sample through an additional stage of analysis,
the threshold should be set high. For Owl 31.3, a one-in-
a-million event corresponds to a score of 115. On the
other hand, if the protein was known with certainty to be a
yeast protein, this would reduce the 5% significance
threshold to 54, because there are only some 11 000
yeast entries in Owl 31.3.

3.2 Sequence queries

The ready availability, through the World Wide Web, of
the EMBL PeptideSearch package has contributed to the
popularity of the Sequence Tag search [9]. This approach
relies on being able to interpret a few residues of amino
acid sequence from an MS/MS spectrum. In many cases,
the combination of peptide mass, interpreted sequence,
and the fragment ion masses which enclose the
sequence, are sufficient to identify the peptide unambigu-
ously. However, it is difficult to see any fundamental
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MS/MS Fragmentation of NVQALVENLAK
From: gi|3786056, (X85729) granule-associated protein [Ralstonia eutropha]

Click mouse within plot area to zoom in by factor of two about that point
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Monoisotopic mass of neutral peptide (Mr): 1324.74
Fixed modifications: SMA (N-Term)
Matches (Bold Red): 15/44 fragment ions using 21 most intense peaks

#: 1 2 3 4 5 6 7 8 9 10 11
b: 242.11 341.18 469.24 540.28 653.36 752.43 881.47 995.52 1108.60 1179.64 1307.73
b++: 121.56 171.10 235.12 270.64 327.19 376.72 441.24 498.26 554.80 590.32 654.37 Figure 7. Example of a peptide
Seq: N v Q A L v E N L A K . .
y++: 599.84 542.82 493.29 429.26 393.74 337.20 287.66 223.14 166.12 109.58 74.06  View report (m/z 663.9 from hit 1
y: 1198.68 1084.64 985.57 857.51 786.47 673.39 574.32 445.28 331.23 218.15 147.11  of the search shown in Fig. 5)
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Figure 8. MALDI-TOF spectrum of an in-gel tryptic digest of a protein isolated from a thermophilic
bacterium. The spectrum was internally calibrated using two trypsin autolysis peaks at m/z 805.42
and m/z2163.06.
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—8—72 values, 36 matches at + 0.02%
—A—24 values, 13 matches at + 0.02%
—6—8 values, 5 matches at + 0.02%

250 -

200 4

150 4

Score for UVRB_THETH

100 4

5040

Figure 9. Score behaviour in a series of pep-
tide mass fingerprint searches of data from the

Full width of peptide mass tolerance window

advantage to performing manual sequence interpretation
of this type when it is possible to perform a search using
the raw MS/MS data. Although the presence of the
sequence data should make the search less computation-
ally intensive, hence faster, the overall throughput is
severely constrained by the interpretation step. The other
difficulty with the sequence tag approach is that the
sequence may be called incorrectly, particularly when
data quality is poor.

Perhaps the enduring value of a sequence query is that it
enables data from orthogonal techniques to be combined.
For example, simply knowing the N-terminal residue for
each peptide in a peptide mass fingerprint provides a sub-
stantial increase in specificity. Such information can be
easily obtained by performing a single cycle of manual
Edman degradation followed by reanalysis [28]. As an
example, a search of four mass values with an error of +
1 Da from the analysis of a tryptic digest gave a match to
an actin, but with a nonsignificant score of 52. A single
cycle of manual Edman degradation was performed in an
attempt to identify the N-terminal residues but, because
of the limited mass accuracy, there was ambiguity in two
cases: 795.6 seq(n-[LIN]); 976.5 seq(n-A); 1516.9 seq(n-
[QEK]); and 1791.2 seq(n-S). (Mass values are average
values for singly protonated ions). Nevertheless, this
combination of mass and sequence data was sufficient to
increase the score to a highly significant 90, confirming
that the source protein was indeed actin. This score
increase corresponds to a difference in probability of 10%.
To a first approximation, this is because the population of
potential matches has been reduced by an order of mag-

spectrum in Fig. 8. Refer to Section 3.1 for full
details. Scores falling in the shaded area are
not significant.

10.00%

nitude for each of the four peptides. Similarly, the ragged
end information generated by carboxypeptidase digestion
can provide positive identification, even though the short
runs of sequence data may be ambiguous or contain gaps
[29].

The additional specificity provided by amino acid
sequence qualifiers allows the peptide mass tolerance to
be relaxed. Searching the average mass value 1854.1
seq(n-TCP) seq(*-DST) seq(c-R) against Owl 31.3 with a
+ 25% mass tolerance gives several matches to proteins
containing the peptide TCPVQLWVDSTPPPGTR (1854.1
Da), and also three matches to a peptide which differ by a
single substitution: TCPVQLWVDSTPPPGSR (1840.1).
This pseudohomology search mode can be useful when
the analyte protein itself is not present in the database.
Amino acid composition can be deduced from the mass
shifts following microscale chemical derivatisation [15], or
from physical properties such as UV absorbance. The
knowledge that a particular amino acid is present or
absent significantly increases the specificity of a peptide
mass fingerprint [20].

3.3 MS/MS ions search

Although the overwhelming majority of MS/MS fragment
ion searches are conducted on electrospray data from
triple quadrupole or ion trap instruments [8, 30], the tech-
nique is equally applicable to post-source decay (PSD)
data from MALDI-TOF instruments [31]. While PSD spec-
tra can sometimes appear “scratchier” than ESI data,
excellent matches can still be obtained. Figure 10 is an
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example of a good match to a peptide from human serum
albumin. A score of 99 was obtained by finding 27
matches from 80 calculated fragment ions using the 56
most intense peaks. Note that this does not mean that the
remaining peaks are noise. In fact, examination of the
data shows that several of the lower intensity peaks cor-
respond to fragment ions. It simply means that matching
the 56 most intense peaks gave the lowest probability. In
addition to providing estimates for the expected errors on
the precursor and fragment ion masses, the user is
required to specify which fragment ion series can be
expected in the data. As mentioned earlier, searching for
too many ion series causes a rapid loss of specificity. In
the previous example, the PSD data were searched using
the default ion series set (a, a-17, b, b-17, and y). Chemi-
cal derivatisation of peptides has long been used to assist
in de novo sequencing of peptides by directing fragmenta-
tion along particular pathways. Derivatisation, which
brings a dual benefit of improved S/N and sparser MS/MS
spectra, is equally beneficial to database searching. An
example of this is illustrated in Figs. 5-7.

MS/MS Fragmentation of RPCFSALEVDETYVPK
From: HUMALBGC1, HUMALBGC NID: g178343 - human.

Electrophoresis 1999, 20, 3551-3567

An in-gel tryptic digest of a protein purified from intracellu-
lar polyhydroxyalkanoic acid granules from Ralstonia
eutropha was analysed by ESI-MS on a Finnigan MAT
LCQ ion trap [32]. Initial PCR and DNA studies had
shown that the DNA sequence coding for this protein,
phasin, differed significantly from that deposited in Gen-
bank. Analysis of the expressed protein was thus under-
taken to confirm these results. One of the DNA sequence
differences was a single base insertion, giving rise to a
frame shift, resulting in significant alteration of the C-ter-
minal region. To facilitate de novo sequencing of the
affected peptides, SMA derivatisation was used to direct
fragmentation into the b and y series.

SMA derivatisation modifies lysine residues and the N-
terminus. In this particular experiment, derivatisation of C-
terminal lysine residues with SMA did not go to comple-
tion. This may have been due to the influence of buffer
salts eluted from the bulk polyacrylamide matrix. Figure 5
shows the result of searching with SMA modification of
lysine specified as nonquantitative, and serves to illus-

Click mouse within plot area to zoom in by factor of two about that point
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Monoisotopic mass of neutral peptide (Mr): 1923.94
Fixed modifications: Propionamide (C)
Matches (Bold Red): 27/80 fragment ions using 56 most intense peaks
#: 1 2 3 4 5 6 7 8 9 10 11
a: 129.11 226.17 400.21 547.28 634.31 705.35 818.43 947.48 1046.55 1161.57 1290.62
a*: 112.09 209.14 383.19 530.25 617.29 688.32 801.41 930.45 1029.52 1144.55 1273.59
b: 157.11 254.16 428.21 575.28 662.31 733.35 846.43 975.47 1074.54 1189.57 1318.61
b*: 140.08 237.14 411.18 558.25 645.28 716.32 829.40 958.45 1057.51 1172.54 1301.58
Seq: R P C F S A L E v D E
y: 1924.95 1768.85 1671.79 1497.75 1350.68 1263.65 1192.61 1079.53 950.48 851.42 736.39
#: 16 15 14 13 12 11 10 9 8 7 6

Figure 10. Peptide view of a PSD spectrum which matches to the sequence RPCFSALEVDETYVPK
from human serum albumin. Peptide mass tolerance = 0.15 Da, fragment ion tolerance + 1 Da, no
restriction on protein mass, one missed cleavage allowed. Cysteine was assumed to be derivatised

by acrylamide adduction.
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trate the ability of the software to handle incomplete
chemical modifications in a transparent fashion. Of 20
peptides analysed, 11 contained fully modified lysine
groups. Sequence coverage was 83%, as shown in Fig.
6. The effect of the SMA group can be seen in Fig. 7.
Complete b and y ion series can be identified, even
though the lowest probability match misses a few. In this
particular spectrum, doubly charged fragment ions are
not abundant; thus a search restricted to just the b and y
series would give an increased score.

In general, the sequences in the dbEST database do not
correspond to intact proteins. When a number of peptides
from a tryptic digest of a protein are searched collectively
against dbEST, it is not unusual to see matches to several
overlapping clones that, taken together, span the com-
plete protein (see Fig. 11).

Probability-based protein identification 3563

Peptides from an in-gel tryptic digest of a human protein
were fully derivatised with SMA and analysed by ESI-MS
on a Finnigan MAT LCQ ion trap. Parallel searching of 16
peptide MS/MS spectra (submitted as a single search
task) against dbEST produced a ranked hit-list containing
highly significant matches to several human clones. Using
the highest ranked clone as input to the nucleic acid
sequence alignment program ESTBlast (http://www.
hgmp.mrc.ac.uk/ESTBIlast/; R. Gill, personal communica-
tion) produced the alignments shown in Fig. 12.

Comparison of the Mascot and ESTBIast results reveals
extensive similarity. Because the two reports use different
accession numbers, the Mascot hit numbers have been
added to Fig. 12 as an additional column. All but one of
the clones listed in the ESTBIast report are present in the
top 13 Mascot matches. Several additional matches

User : pappin

Email : pappin@icrf.icnet.uk

Search title

Database : dbEST 19990627 (15512628 sequences; 1983017940 residues)
Timestamp : 3 Aug 1999 at 10:27:54 GMT

Top Score

Probability Based Mowse Score

Score is -10*Log(P), where P is the probability that the observed match

is a random event. Scores greater than 84 are significant (p<0.05).

Number of Hits
[
<
]

w
|

100 150 200 250
Probability Based Mowse Score

EST64656 Jurkat T-cells VI Homo sapiens cDNA 5
seql436 Homo sapiens cDNA clone b4HB3MA-COT8-H
EST07233 Homo sapiens cDNA clone HIBBS59 5' en
nc80b03.rl NCI_CGAP_GCl Homo sapiens cDNA clon
mf25g02.r1 Soares mouse embryo NbME13.5 14.5 M
mf41£f03.rl Soares mouse embryo NbME13.5 14.5 M
zm80e05.r1 Stratagene neuroepithelium (#937231
ym32d05.r1 Homo sapiens cDNA clone 49950 5' si

: 258 for gi|2216877, ablB8g06.rl Stratagene lung (#937210) Homo s

Figure 11. The result of
searching 16 MS/MS spectra
from an in-gel tryptic digest of
a human protein against a
6-frame translation of dbEST
showing matches across multi-

(#937210) Homo sapi

Accession Mass Score Description

1. gi|2216877 22962 258 abl8g06.r1 Stratagene lung
2. gil|2008473 10511 230

3. gi|471460 12458 212

4. gi|390368 14129 211

5. gi|2358492 19260 195

6. gi|1540583 22837 182

7. gi|1538544 22810 174

8. gi|1695399 7797 173

9. gi|900268 15938 171

10. gi|1990232 8198 170

11. gi|1506483 21341 167 mi56b03.rl Soares mouse
12. gi|1277725 17098 167 za44d09.r1 Soares fetal
13. gi| 658642 15697 163 ya71f08.rl Homo sapiens
14. gi|2008911 8892 162 EST65162 Jurkat T-cells
15. gi|669799 10659 162 H. sapiens partial cDNA
16. gi|2901659 11338 161 0d74b01.s1 NCI_CGAP_Ov2
17. gi|1959189 14712 161

18. gi|1793272 18564 161 mul9002.rl Soares 2NbMT
19. gi|4059808 35288 156 mi56b03.yl Soares mouse
20. gi|2721726 11356 153

Results List

EST42803 Endometrial tumor Homo sapiens cDNA 5

embryo NbME13.5 14.5 M
liver spleen 1NFLS Hom
cDNA clone 67143 5' si
VI Homo sapiens cDNA 5
sequence; clone c-0sh0
Homo sapiens cDNA clon

EST177787 Jurkat T-cells VI Homo sapiens cDNA

Mus musculus cDNA clon
embryo NbME13.5 14.5 M

vu28bl2.rl Barstead mouse myotubes MPLRB5 Mus

ple entries. Peptide mass toler-
ance = 0.1%, fragment ion toler-
ance = 0.5 Da, no restriction on
protein mass, one missed cleav-
age allowed. The peptides had
been derivatised with SMA. Oxi-
dation of methionine and acryl-
amide adduction to cysteine
were specified as nonquantita-
tive modifications.
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Graphical view of EST blast for gi|2216877

one division is equal to 25 bases

{-} = unsequenced data
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Figure 12. A sequence alignment report from the program ESTBIast for the highest scoring clone in

Fig. 11

appear in the Mascot list because the search was not
restricted to human clones. In this example, therefore, the
MS-based search was able to identify the majority of
overlapping clones required for the subsequent assembly
of the entire protein sequence.

3.4 Limitations of the method

3.4.1 Nonindependent experimental data

The bane of peptide mass fingerprint searching has
always been false positives. Although the probability-
based scoring scheme described here provides a quanti-
tative measure of the significance of a match, it is based
on certain assumptions. One of these assumptions is that
the experimental data are independent measurements
sampled from the population of all possible measure-
ments. If the data are not independent, then the absolute
score becomes an unreliable guide to significance,
(although the relative scores within a search can still be
useful). In fact, it is perfectly possible for a nonindepend-
ent data set to get a highly significant score from a search
against the randomised database.

Most commonly, the problem is duplicate mass values.
In peptide mass fingerprint data, this may be because
the mass error window is too large, or the peaks are
split by noise or faulty peak picking. In an MS/MS data
set, it may be that scans belonging to a single chroma-
tographic peak have been submitted as independent
spectra rather than averaged together. Whatever the
reason, if there are pairs of duplicate mass values, and
one matches, then so does the other. The score, calcu-
lated on the basis that these are independent matches,
is then too high. Less obviously, data sets without dupli-
cate values can gain significant scores in searches
against the random database when nonquantitative
modifications are included. If a modification is specified,
it is quite likely that the data contain pairs of values
which are separated by the mass difference of that
modification. If one value of a pair matches a sequence
which contains the modifiable residue, then the probabil-
ity of the other matching the same sequence is much
greater than random. Just as in the case of duplicate
masses, the experimental data are not independent and
the reported score may be too high.
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3.4.2 Atypical sequence entries

Some of the entries in the sequence databases exhibit
extended repeats, such as AF005273, porcine submaxil-
lary apomucin. Although the molecular mass of this pro-
tein is 1.2 MDa, over 80% of the sequence is composed
of an identical 7 kDa repeat. It is difficult to know how to
treat such cases. If a single experimental peptide mass is
allowed to match to multiple calculated masses, then a
single experimental mass which matches within a repeat
will give a large and meaningless score. But, if duplicate
matches are not permitted, it will be virtually impossible to
get a match to such a protein because the number of
measurable mass values is too small to give a statistically
significant score.

3.5 High throughput protein identification

3.5.1 Closed loop automation

Maximum throughput at minimum cost will generally be
achieved by “sieving” samples through a series of analyti-
cal screening stages of increasing complexity. The pre-
requisites for this are a scoring scheme which allows rule-
based software to decide whether identification has been
achieved, and rapid searching to enable real-time deci-
sions to be made. For example, mass analysis of a tryptic
digest by MALDI-TOF is rapid, sensitive and inexpensive.
In many cases, a peptide fingerprint of the intact digest
mixture will be all that is needed to identify a protein. A
peptide mass fingerprint takes only a few seconds; it can
thus be done in real-time, while the sample is still in the
instrument. If the result is not conclusive, there is the pos-
sibility to return to the sample and select peptide signals
for MS/MS analysis by PSD. While the quality of a PSD
spectrum may not be as high as could be achieved by
other means, it will often be sufficient to confirm an
ambiguous identification.

Proteins which cannot be identified by these means might
proceed to be analysed by LC-MS/MS on an electrospray
instrument. The achievable throughput of LC-MS/MS is
limited by the chromatography stage, so it is not usually
cost-effective to use this technique for primary screening.
(Faster separations technologies, such as CE or step-gra-
dient elution or short columns will certainly lead to in-
creased throughput. But, continuing advances in MALDI
technology seem likely to maintain the differential in
throughput). There are two options for handling the flow
of data from an LC-MS/MS run. One is to submit the com-
pleted data set for searching by Mascot at the end of the
run. The other is to submit the accumulating data in real-
time, ideally after each new peptide elutes as indicated by
the reconstructed ion chromatogram. Although the latter
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option involves repetitive searching, it actually gives high-
er throughput because the analysis can be terminated as
soon as there are data from sufficient peptides to identify
the protein. In practice, this can only be implemented as a
closed loop, in which software performs instrument con-
trol according to decisions based on search results. Such
an arrangement is illustrated schematically in Fig. 13.

3.5.2 Search speed

The preceding paragraphs illustrate the importance of
rapid searching. As discussed earlier, there are trade-offs
to be made between search speed and the sophistication
of the underlying model. Improved search speed could be
achieved by precalculating and indexing quantities
such as peptide molecular masses. Unfortunately, this
would restrict the range of cleavage agents and modifica-
tions which could be supported, because a new index
would be required for each combination of these parame-
ters. Benchmarks for search speed can be misleading,
because small changes in certain parameters can make
large differences in the search time. In Mascot, search
time is roughly proportional to the number of calculated
peptides. Thus, search time increases pro rata with both
database size and the width of the peptide mass toler-
ance window. A lower specificity enzyme, such as chymo-
trypsin, will take longer than a higher one, with a “no-
enzyme” search as the worst case.

Quantitative modifications cause no increase in search
time because they are simply a shift in the effective resi-
due mass. In contrast, each additional nonquantitative
modification causes a geometrical increase in the search
time, dependent on the abundance of the affected resi-
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Figure 13. Functional block diagram illustrating closed
loop automation for high throughput protein identification
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due. For an MS/MS ions search, the search time in-
creases only slowly with the number of peptides. This is
because the experimental data can be indexed at the
beginning of the search for efficient reference during a
single pass through the sequence database. Table 3 con-
tains two search speed benchmarks. One represents a
simple peptide mass fingerprint. The other represents a
more computationally intensive search of the full dbEST
database as of June 27, 1999, including two variable
modifications and 16 MS/MS spectra. Provided that the
FASTA sequence databases are memory-mapped,
searches are processor-bound, and throughput can scale
linearly with the number of available processors where
the system architecture allows.

4 Concluding remarks

Since the first papers on peptide mass fingerprinting ap-
peared, many authors have observed that the availability
of each completed genome would turn protein identifica-
tion within that species into a bounded problem. Today,
the sequencing of the human genome is near completion.
Searching genomic data introduces some additional com-
plexity [33]. In the case of a protein database, an algo-
rithm simply searches for the best match between the
experimental data and each discrete entry. In the case of
genomic sequence data, an algorithm must seek to local-
ise individual peptide matches to a defined region which
may correspond to an open reading frame. Since there is

Table 3. Two search speed benchmarks

Example 1

Platform 1 X 400 MHz Pentium Il, Windows NT 4
Search type Peptide mass fingerprint
Database NCBInr

Number of entries ~380 000

Input data 8 peptide masses

Peptide mass tolerance +0.1%

Enzyme Trypsin, 0 missed cleavage
Variable modifications None

Execution time 14s

Example 2

Platform 6 X 350 MHz Pentium II, Windows NT 4
Search type MS/MS ions search

Database DbEST

Number of entries ~15500 000 (6 frame translation)
Input data 16 MS/MS spectra

Peptide mass tolerance +0.1%

Fragment ion mass tolerance 0.5 Da

Enzyme Trypsin, 1 missed cleavage
Variable modifications Met oxidation, Cys propionamide
Execution time 4mindds
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a high probability of frame shifts across any extended
stretch of genomic sequence data, it becomes essential
to correlate matches to the translation in all three frames.
We conclude that the use of MS data for protein identifica-
tion is still at an early stage of development. The introduc-
tion of probability-based scoring is a significant step
towards the integration of this methodology with purely
sequence-based bioinformatics tools, but much remains
to be done.

DNP and DJCP were supported by the Imperial Cancer
Research Fund.
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