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e Bayesian Estimation (Bayesian learning
to pattern classification problems)
e In MLE 6 was supposed fix
e In BE 0 Is a random variable

e The computation of posterior probabilities
P(w; | X) lies at the heart of Bayesian
classification

e Goal: compute P(w; | X, D)
Given the sample D, Bayes formula can be

written
P(C()l- |X,D): cp(xla)i’D)P(a)i |D)

|@;,D)P(, | D)
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e To demonstrate the preceding eguation, use:

P(x,D|w,)=P(x|D,w,)P(D|w,) (from def.of cond. prob.)
P(x|D)=> P(x,»,|D) (from law of total prob.)
j

P(w,) = P(w. | D) (Training sample provides this!)

We assume that samples in different classes are independent
Thus:

D) P(,)

P(w, | x,D) = cP(XIcol.
ZP(X |®,,D)P(@,)
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e Bayesian Parameter Estimation: Gaussian
Case

Goal: Estimate 6 using the a-posteriori density
P(6 | D)

e The univariate case: P(u | D)
u Is the only unknown parameter

P(x | ) ~N(p,6°)
P(1) ~N(ig,05)

(1o and o, are known!)
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P(D| 1) P(1)
| PO 1)P()d

~a[ [ P, | )P

e But we know

P(u|D) = Bayes Formula

p(x, | 1)~ N(u %) and p(u) ~ Ny, %)

Plugging In their gaussian expressions and
extracting out factors not depending on n yields:

1
p(mD):aexp[—E -

(from eq. 29 page 93)
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Observation: p(u|D) I1s an exponential of a quadratic

It is again normal! It is called a reproducing density

P(u|D)~ N(u,,07)
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"
p(u|D)= aexl{—z

e Identifying coefficients in the top equation with that of
the generic Gaussian




Solving for p, and o, yields:

From these equations we see as n increases:
e the variance decreases monotonically
e the estimate of p(u|D) becomes more peaked
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FIGURE 3.2, Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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e The univariate case P(x | D)
e P(u | D) computed (in preceding discussion)
e P(x | D) remains to be computed!

P(x|D) = j P(x| 1) P(u|D)du is Gaussian

IIOVGERR P(x | D) ~ N(,un,O'2 + Gf)
We know o? and how to compute

(Desired class-conditional density P(x | D;, o))
Therefore: using P(x | D;, ) together with P(w))
And using Bayes formula, we obtain the
Bayesian classification rule:

Max [P(w,]x,D]= Max [P(x|0,.D )P(o),)]
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e 3.5 Bayesian Parameter Estimation: General
Theory

e P(x | D) computation can be applied to any situation
In which the unknown density can be
parameterized: the basic assumptions are:

e The form of P(x | 6) is assumed known, but the value of 6
IS not known exactly

e Our knowledge about 6 is assumed to be contained in a
known prior density P(0)

e The rest of our knowledge 6 Is contained in a set D of n
random variables x,, X,, ..., X, that follows P(x)
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The basic problem is:

p(x| D)= [ p(x|0)p(6| D)d6

Using Bayes formula, we have:
po|D) - C10)PO)

j P(D]0)P(0)d0

And by the independence assumption:

p(D\e»:f_[ p(x, 16)
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Convergence (from notes)
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e Problems of Dimensionality

e Problems involving 50 or 100 features are
common (usually binary valued)

e Note: microarray data might entail ~20000
real-valued features

e Classification accuracy dependant on

e dimensionality
e amount of training data
e discrete vs continuous
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e Case of two class multivariate normal
with the same covariance

® P(X|o;) ~N(w;,2), ]=1,2
e Statistically independent features
e If the priors are equal then:

I e du (Bayes error)

P(error) = %
rl2

where : r® = (4 _ﬂz)zz_l(ﬁﬁ — H)
r* is the squared Mahalanobi s distance
lim P(error ) =0

r—> 0
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e If features are Independent then:

E=diag(cf,c§,---,63)

e Do we remember what conditional independence is?

e Example for binary features:
Let p= Pr[x=1|m,] then P(X|w,) is the product of the p,
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e Most useful features are the ones for which the difference between
the means is large relative to the standard deviation

e Doesn’t require independence

e Adding independent features helps increase r - reduce error

e Caution: adding features increases cost & complexity of feature
extractor and classifier

e It has frequently been observed in practice that, beyond a certain
point, the inclusion of additional features leads to worse rather
than better performance:

e we have the wrong model !

e we don’t have enough training data to support the additional
dimensions
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FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace
the two-dimensional x;, — x; subspace or a one-dimensional x, subspace
be greater overlap of the projected distributions, and hence greater Bayes error. From:

Richard O, Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright
(@ 2001 by John Wiley & Sons, Inc.

here,
there can




e Computational Complexity

e Our design methodology is affected by the
computational difficulty

e “big oh” notation
f(x) = O(h(x)) “big oh of h(x)”

M3(Ccy,Xo) € R?; [F(X)| < coh(x)
(An upper bound on f(x) grows no worse than h(x) for
sufficiently large x!)

f(x) = 2+3x+4x?

g(x) =x2
f(x) = O(x?)
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e “big oh” is not unique!
f(x) = O(x?); f(x) = O(x°); f(x) = O(x*)

e“big theta” notation

f(x) = 6(h(x))

I3 (x,,c,,C,) e R3: VX > X,
0 <c,9(x)=<T1(x)<cC,0(x)

f(x) = 0(x?) but f(x) = 0(x3)




e Complexity of the ML Estimation

e Gaussian priors in d dimensions classifier
with n training samples for each of ¢ classes

e For each category, we have to compute the
discriminant function

o(1)

0(d*n
O(dn) LH) f

g(x)z—l(x— i)zt (x—ﬁ)——lnzn—ilni +1n P(w)
— O(n)
0(d*%n)

Total = O(d?n)
Total for ¢ classes = O(cd?n) = O(d?n)

e Cost increase when d and n are large!
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Overfitting

e Dimensionality of model vs size of training data
e |ssue: not enough data to support the model

e Possible solutions:
e Reduce model dimensionality
e Make (possibly incorrect) assumptions to better estimate X
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Overfitting

e Estimate better X

e use data pooled from all classes
e normalization issues

e use pseudo-Bayesian form A%, + (1-A)X,
e “doctor” X by thresholding entries
e reduces chance correlations

e assume statistical independence
e zero all off-diagonal elements
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Shrinkage

e Shrinkage: weighted combination of common and
Individual covariances

o) = l-a)nX +anX

X ( for O<a <l

(1-a)n +an

e \\e can also shrink the estimate common covariances
toward the identity matrix

X(B)=1L-p)X+pl for 0<p <1
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e Component Analysis and Discriminants

e Combine features in order to reduce the
dimension of the feature space

e Linear combinations are simple to compute and
tractable

e Project high dimensional data onto a lower
dimensional space

e Two classical approaches for finding “optimal”
linear transformation

e PCA (Principal Component Analysis) “Projection that
best the data in a least- square sense”

e MDA (Multiple Discriminant Analysis) “Projection that
best the data in a least-squares sense”
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PCA (from notes)




Hidden Markov Models:
e Markov Chains

e Goal: make a sequence of decisions

e Processes that unfold in time, states at time t are
Influenced by a state at time t-1

e Applications: speech recognition, gesture recognition,
parts of speech tagging and DNA sequencing,

e Any temporal process without memory
o' = {ow(1), o(2), ®(3), ..., o(T)} sequence of states
We might have »°® = {nl, 04, ©2, 2, vl, w4}

e The system can revisit a state at different steps and not
every State need tO be VisitedPattern Classification, Chapter 3 27
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e First-order Markov models

e Our productions of any sequence is described by the
transition probabilities

P(ojt + 1) | o; (1) = g
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FIGURE 3.8. The discrete states, e, in a basic Markov model are represented by nodes,
and the transition probabilities, a;, are represented by links. In a first-order discrete-time
Markov model, at any step ¢ the full system is in a particular state w(f). The state at step
t + 1 is a random function that depends solely on the state at step ! and the transi-
lion probabilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern
Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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0= (a; o)
Po"|0)=a,, .8, .8,,.85 .8, .
P(o(1) = o)

speech recognition

“production of spoken words”

Production of the word: “pattern” represented
by phonemes

Ipl lal It/ lerl In/ [] (11 = silent state)

Transitions from /p/ to /a/, /a/ to /tt/, /tt/ to er/,
fer/ to /n/ and /n/ to a silent.Stal. .. cape s




