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Bayesian Estimation (Bayesian learning 
to pattern classification problems)

In MLE θ was supposed fix
In BE θ is a random variable
The computation of posterior probabilities 
P(ωi | x) lies at the heart of Bayesian 
classification
Goal: compute P(ωi | x, D) 
Given the sample D, Bayes formula can be 
written
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To demonstrate the preceding equation, use:
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Bayesian Parameter Estimation: Gaussian 
Case

Goal: Estimate θ using the a-posteriori density 
P(θ | D)

The univariate case: P(μ | D)
μ is the only unknown parameter

(μ0 and σ0 are known!)
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But we know

Plugging in their gaussian expressions and 
extracting out factors not depending on μ yields: 
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Observation: p(μ|D) is an exponential of a quadratic

It is again normal! It is called a reproducing density
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Identifying coefficients in the top equation with that of 
the generic Gaussian

Yields expressions for μn and σn
2
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Solving for μn and σn
2 yields: 

From these equations we see as n increases:
the variance decreases monotonically
the estimate of p(μ|D) becomes more peaked
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The univariate case P(x | D)

P(μ | D) computed (in preceding discussion)
P(x | D) remains to be computed!

It provides:

We know σ2 and how to compute 
(Desired class-conditional density P(x | Dj, ωj))
Therefore: using P(x | Dj, ωj) together with P(ωj)
And using Bayes formula, we obtain the
Bayesian classification rule:
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3.5 Bayesian Parameter Estimation: General 
Theory

P(x | D) computation can be applied to any situation 
in which the unknown density can be 
parameterized: the basic assumptions are:

The form of P(x | θ) is assumed known, but the value of θ
is not known exactly
Our knowledge about θ is assumed to be contained in a 
known prior density P(θ)
The rest of our knowledge θ is contained in a set D of n 
random variables x1, x2, …, xn that follows P(x)
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The basic problem is:
“Compute the posterior density P(θ | D)”
then “Derive P(x | D)”, where

Using Bayes formula, we have:

And by the independence assumption:
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Convergence (from notes)
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Problems of Dimensionality
Problems involving 50 or 100 features are 
common (usually binary valued)
Note: microarray data might entail ~20000 
real-valued features
Classification accuracy dependant on

dimensionality
amount of training data
discrete vs continuous
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Case of two class multivariate normal 
with the same covariance

P(x|ωj) ~N(μj,Σ), j=1,2
Statistically independent features
If the priors are equal then:
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If features are conditionally independent then:

Do we remember what conditional independence is?
Example for binary features:

Let pi= Pr[xi=1|ω1] then P(x|ω1) is the product of the pi
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Most useful features are the ones for which the difference between 
the means is large relative to the standard deviation

Doesn’t require independence

Adding independent features helps increase r reduce error

Caution: adding features increases cost & complexity of feature 
extractor and classifier

It has frequently been observed in practice that, beyond a certain 
point, the inclusion of additional features leads to worse rather 
than better performance: 

we have the wrong model !
we don’t have enough training data to support the additional 
dimensions
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Our design methodology is affected by the 
computational difficulty

“big oh” notation
f(x) = O(h(x)) “big oh of h(x)”
If:
(An upper bound on f(x) grows no worse than h(x) for 
sufficiently large x!)

f(x) = 2+3x+4x2

g(x) = x2

f(x) = O(x2)
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“big oh” is not unique!
f(x) = O(x2); f(x) = O(x3); f(x) = O(x4)

“big theta” notation
f(x) = θ(h(x))
If:  

f(x) = θ(x2) but f(x) ≠ θ(x3) 
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21Complexity of the ML Estimation

Gaussian priors in d dimensions classifier 
with n training samples for each of c classes

For each category, we have to compute the 
discriminant function

Total = O(d2n)
Total for c classes = O(cd2n) ≅ O(d2n)

Cost increase when d and n are large!
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Overfitting
Dimensionality of model vs size of training data

Issue: not enough data to support the model
Possible solutions:

Reduce model dimensionality
Make (possibly incorrect) assumptions to better estimate Σ
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Overfitting
Estimate better Σ

use data pooled from all classes
normalization issues

use pseudo-Bayesian form λΣ0 + (1-λ)Σn
“doctor” Σ by thresholding entries

reduces chance correlations

assume statistical independence
zero all off-diagonal elements
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Shrinkage

Shrinkage: weighted combination of common and 
individual covariances

We can also shrink the estimate common covariances
toward the identity matrix
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25Component Analysis and Discriminants

Combine features in order to reduce the 
dimension of the feature space
Linear combinations are simple to compute and 
tractable
Project high dimensional data onto a lower 
dimensional space
Two classical approaches for finding “optimal”
linear transformation

PCA (Principal Component Analysis) “Projection that 
best represents the data in a least- square sense”
MDA (Multiple Discriminant Analysis) “Projection that 
best separates the data in a least-squares sense”
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PCA (from notes)
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27Hidden Markov Models: 
Markov Chains

Goal: make a sequence of decisions

Processes that unfold in time, states at time t are 
influenced by a state at time t-1

Applications: speech recognition, gesture recognition, 
parts of speech tagging and DNA sequencing, 

Any temporal process without memory
ωT = {ω(1), ω(2), ω(3), …, ω(T)} sequence of states
We might have ω6 = {ω1, ω4, ω2, ω2, ω1, ω4} 

The system can revisit a state at different steps and not 
every state need to be visited
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First-order Markov models

Our productions of any sequence is described by the 
transition probabilities 

P(ωj(t + 1) | ωi (t)) = aij
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θ = (aij, ωT)
P(ωT | θ) = a14 . a42 . a22 . a21 . a14 . 

P(ω(1) = ωi)

Example: speech recognition

“production of spoken words”
Production of the word: “pattern” represented 

by phonemes
/p/ /a/ /tt/ /er/ /n/ // ( // = silent state)

Transitions from /p/ to /a/, /a/ to /tt/, /tt/ to er/, 
/er/ to /n/ and /n/ to a silent state
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