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e Introduction

e Data availability in a Bayesian framework

o We could design an optimal classifier if we knew:
e P(w,) (priors)
e P(x | o) (class-conditional densities)

Unfortunately, we rarely have this complete
information!

e Design a classifier from a training sample
e No problem with prior estimation

e Samples are often too small for class-conditional
estimation (large dimension of feature space!)
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e A priori information about the problem
e Do we know something about the distribution?
e —> find parameters to characterize the distribution

e Example: Normality of P(x | )

P(x | @) ~ N(w;, %)
e Characterized by 2 parameters

e Estimation techniques

e Maximum-Likelihood (ML) and the Bayesian estimations
o Results are nearly identical, but the approaches are different
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e Parameters in ML estimation are fixed but
unknown!

o Best parameters are obtained by maximizing the
probability of obtaining the samples observed

e Bayesian methods view the parameters as
random variables having some known distribution

e In either approach, we use P(w; | x)
for our classification rule!
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e Maximum-Likelihood Estimation

o Has good convergence properties as the
sample size increases

e Simpler than any other alternative techniques

e General principle

e Assume we have c classes and
P(x | @) ~N(, %)
P(x| ) =P (x| o, 6,) where:
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e Use the information
provided by the training samples to estimate

0=(0,,0,..,0,) eacho (i=1,2, ... c)is associated
with each category

e Suppose that D contains n samples, x4, X,,..., X,

P(D|6) = tljrl'P(xk 16) = F(0)

P(D|06)is called thelikelihnood of 8 w.r.t. the set of samples)

o ML estimate of 0 is, by definition the value that
maximizes P(D | 0)
“It is the value of 6 that best agrees with the actually
observed training sample”
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, bul unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|#) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked #; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood [i#), shown at the bottom. Note that even
though they look similar, the likelihood p(T|&) is shown as a function of & whereas the
conditional density p(x|#) is shown as a function of x. Furthermore, as a function of &,
the likelihood p(T4) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.
Copyright (© 2001 by John Wiley & Sons, Inc.
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o Optimal estimation
e Let0=(0,, 0,, ..., 0,) and let V, be the gradient operator

o We define [(0) as the log-likelihood function
1(0) =In P(D | 6)
(recall D is the training data)

e New problem statement:
determine 0 that maximizes the log-likelihood

0= arg max 1(0)
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The definition of I() is:

10)=>In p(x, |0)

(Vol = §V0 InP(x, [0)) (eq6)

Set of necessary conditions for an optimum is:

Vol=0 (eq.7)




e Example, the Gaussian case: unknown p
e \We assume we know the covariance
o p(X; | p) ~ N(p, )
(Samples are drawn from a multivariate normal
population)

In p(x, | ) ———In[(zm"\z\]——(xk =" (x, —p)

and V,Inp(x, [m)=Z"(x,—p) (eq.9)

0 = u therefore:
The ML estimate for

> 7 (x, —f) =0 fromegs 6,7 &9
k=
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. Multiplying by ¥ and rearranging, we
obtain:

Just the arithmetic average of the samples

of the training samples!

If P(x | @) (=1, 2, ..., c)is supposed to be Gaussian in a d-
dimensional feature space; then we can estimate the vector

0=(0,,0,, ..., 0.)t and perform an optimal classification!
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e Example, Gaussian Case: unknown g and X
e First consider univariate case: unknown x and o

6 = (04, 0,) = (n, o°)
1

1
| =1In p(x, |0) = —?In 270, — >0 (X, —0,)°

2

°_(In P(x,|90))

o0 4

°_(In P(x, |0))
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Summation (over the training set):

Pattern Classification, Chapte3



e The ML estimates for the multivariate case is
similar
e The scalars y and p are replaced with vectors
e The variance o2 is replaced by the covariance matrix
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Bias
e ML estimate for o2 is biased

e Extreme case: n=1, E[] = 0 # &2

e As n increases the bias is reduced

—> this type of estimator is called asymptotically
unbiased
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e An elementary unbiased estimator for X is:

1 < n n
C= —Z(Xk — ) (x, — )’
n-1'=

Sample covariance matrix

This estimator is unbiased for all distributions

- Such estimators are called absolutely
unbiased
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e Our earlier estimator for X is biased:

n

- 2 (x —p)(x — )’
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e Appendix: ML Problem Statement

o Let D ={Xq, Xy, ..., X}

P(x4,..., X, | ) = I1""P(x, | 0); |ID| = n

Our goal is to determine [§] (value of 6 that
maximizes the likelihood of this sample set!)
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N(Ivlp 2:) = P(XJ’ 0)1)
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0=(0,0, ..., 0)

Problem: find [s] such that:

Mglx P(D | 0) = MaxP(X4,...,X, | 0)

— Max [TP(x, | 6)
k=1
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