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Introduction
Data availability in a Bayesian framework

We could design an optimal classifier if we knew:
P(ωi) (priors)
P(x | ωi) (class-conditional densities)

Unfortunately, we rarely have this complete 
information!

Design a classifier from a training sample
No problem with prior estimation
Samples are often too small for class-conditional 
estimation (large dimension of feature space!)
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A priori information about the problem

Do we know something about the distribution?
find parameters to characterize the distribution 

Example: Normality of P(x | ωi)

P(x | ωi) ~ N( μi, Σi)

Characterized by 2 parameters

Estimation techniques

Maximum-Likelihood (ML) and the Bayesian estimations
Results are nearly identical, but the approaches are different

1
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Parameters in ML estimation are fixed but 
unknown!

Best parameters are obtained by maximizing the 
probability of obtaining the samples observed

Bayesian methods view the parameters as 
random variables having some known distribution

In either approach, we use P(ωi | x)
for our classification rule!
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Maximum-Likelihood Estimation

Has good convergence properties as the 
sample size increases
Simpler than any other alternative techniques

General principle

Assume we have c classes and
P(x | ωj) ~ N( μj, Σj)
P(x | ωj) ≡ P (x | ωj, θj) where:
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Use the information
provided by the training samples to estimate 
θ = (θ1, θ2, …, θc), each θi (i = 1, 2, …, c) is associated 
with each category

Suppose that D contains n samples, x1, x2,…, xn

ML estimate of θ is, by definition the value that  
maximizes P(D | θ)
“It is the value of θ that best agrees with the actually 
observed training sample”
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Optimal estimation

Let θ = (θ1, θ2, …, θp)t and let ∇θ be the gradient operator

We define l(θ) as the log-likelihood function
l(θ) = ln P(D | θ)

(recall D is the training data)

New problem statement:
determine θ that maximizes the log-likelihood
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The definition of l() is:

and

Set of necessary conditions for an optimum is:

∇θl = 0   (eq. 7)
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Example, the Gaussian case: unknown μ

We assume we know the covariance
p(xi | μ) ~ N(μ, Σ)
(Samples are drawn from a multivariate normal 
population)

θ = μ therefore:
The ML estimate for μ must satisfy:
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• Multiplying by Σ and rearranging, we 
obtain:

Just the arithmetic average of the samples 
of the training samples!

Conclusion:
If P(xk | ωj) (j = 1, 2, …, c) is supposed to be Gaussian in a d-

dimensional feature space; then we can estimate the vector 
θ = (θ1, θ2, …, θc)t and perform an optimal classification!
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Example, Gaussian Case: unknown μ and Σ
First consider univariate case: unknown μ and σ
θ = (θ1, θ2) = (μ, σ2)
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Summation (over the training set):

Combining (1) and (2), one obtains:
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The ML estimates for the multivariate case is 
similar

The scalars χ and μ are replaced with vectors
The variance σ2 is replaced by the covariance matrix
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Bias
ML estimate for σ2 is biased

Extreme case: n=1, E[ ] = 0 ≠ σ2

As n increases the bias is reduced
this type of estimator is called asymptotically 

unbiased
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An elementary unbiased estimator for Σ is:

This estimator is unbiased for all distributions
Such estimators are called absolutely 

unbiased
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Our earlier estimator for Σ is biased:

In fact it is asymptotically unbiased:
Observe that 
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Appendix: ML Problem Statement

Let D = {x1, x2, …, xn}

P(x1,…, xn | θ) = Π1,nP(xk | θ); |D| = n

Our goal is to determine     (value of θ that 
maximizes the likelihood of this sample set!)

θ̂
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|D| = n
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θ = (θ1, θ2, …, θc)

Problem: find     such that:θ̂

∏ θ=

θ=θ

=

θ
n

1k
k

n1

)|x(PMax                     

)|x,...,x(MaxP)|D(PMax

2


