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Chapter 2 (part 3)
Bayesian Decision Theory 

(Sections 2-6,2-9)

• Discriminant Functions for the Normal Density

• Bayes Decision Theory – Discrete Features
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2Discriminant Functions for the 
Normal Density

• We saw that the minimum error-rate 
classification can be achieved by the 
discriminant function

gi(x) = ln P(x | ωi) + ln P(ωi)

• Case of multivariate normal
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Case Σi = σ2I (I stands for the identity matrix)

• What does “Σi = σ2I” say about the 
dimensions?

• What about the variance of each dimension?
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• We can further simplify by recognizing 
that the quadratic term xtx implicit in the 
Euclidean norm is the same for all i.
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• A classifier that uses linear discriminant
functions is called “a linear machine”

• The decision surfaces for a linear machine 
are pieces of hyperplanes defined by:

gi(x) = gj(x)

The equation can be written as:
wt(x-x0)=0
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• The hyperplane separating Ri and Rj

always orthogonal to the line linking the means!
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• Case Σi = Σ (covariance of all classes are 
identical but arbitrary!)
Hyperplane separating Ri and Rj

(the hyperplane separating Ri and Rj is generally not 
orthogonal to the line between the means!)
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• Case Σi = arbitrary

• The covariance matrices are different for each category

The decision surfaces are hyperquadratics
(Hyperquadrics are: hyperplanes, pairs of hyperplanes, 
hyperspheres, hyperellipsoids, hyperparaboloids, 
hyperhyperboloids)
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Bayes Decision Theory – Discrete 

Features

• Components of x are binary or integer valued, x can take 
only one of m discrete values 

v1, v2, …, vm

concerned with probabilities rather than probability 
densities in Bayes Formula:
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Bayes Decision Theory – Discrete 

Features

• Conditional risk is defined as before: R(α|x)

• Approach is still to minimize risk:

)|(minarg* xii
R αα =
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Bayes Decision Theory – Discrete 
Features

• Case of independent binary features in 2 
category problem
Let x = [x1, x2, …, xd ]t where each xi is either 0 
or 1, with probabilities:

pi = P(xi = 1 | ω1)
qi = P(xi = 1 | ω2)
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Bayes Decision Theory – Discrete 

Features

• Assuming conditional independence, P(x|ωi) can be 
written as a product of component probabilities:
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Bayes Decision Theory – Discrete 

Features

• Taking our likelihood ratio
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• The discriminant function in this case is:
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)(P
)(Pln

q1
p1lnw       

:and

d,...,1i      
)p1(q
)q1(plnw       

:where

wxw)x(g

21

2

1
d

1i i

i
0

ii

ii
i

0i

d

1i
i

≤>

+
−
−

=

=
−
−

=

+=

∑

∑

=

=

ωω
ω
ω


