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Chapter 2 (part 3)
Bayesian Decision Theory
(Sections 2-6,2-9)

® Discriminant Functions for the Normal Density

® Bayes Decision Theory — Discrete Features




Discriminant Functions for the
Normal Density

® \We saw that the minimum error-rate
classification can be achieved by the
discriminant function

gi(x) =In P(X| @) + In P(@)

® Case of multivariate normal

g;(x) :_%(X_ﬂi)ti(x_ﬂi)_%ln27[‘%'”‘2""In P(w;)
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Case X = o2l (i stands for the identity matrix)

® What does “2; = &?I” say about the
dimensions?

® \What about the variance of each dimension?
Note : both [£;|and (d/2) Inz are independent of i in

0,0 = 2 (¢~ ) Y. (¢~ )~ 102z = In[3, |+ InP()

Thus we can simplify to:
2

_Hl_ﬂi

2

g;(x) = +InP(w)
20

where ||| denotes the Euclidean norm
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® We can further simplify by recognizing
that the quadratic term x'x implicit in the
Euclidean norm is the same for all I.

g; (x) = w;x+ W, (linear discriminant function)

where:

W, = 11.2 , Wi = 212 pip +InP(w)

O
(w,, IS called the threshold for the ith category!)
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® A classifier that uses linear discriminant
functions Is called “a linear machine”

® The decision surfaces for a linear machine
are pieces of hyperplanes defined by:

gi(X) = g;(x)

The equation can be written as:
W(X-X4)=0
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® The hyperplane separating ;eiand E,

always orthogonal to the line linking the means!

If P(w;)=P(w;) then xozé(uﬁruj)
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d — 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|e;) and the boundaries for the case Plan) = P(w;). In the three-dimensional case,
the grid plane separates Ry from R;. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern

Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these one-, two- and

three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by John Wiley &
Sans, Inc.
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® Case X, = X (covariance of all classes are
identical but arbitrary!)

Hyperplane separating Ri and Rj
Has the equation
w'(x—x,)=0
Where
w=X"(u, —1;)
and
In[P(@)/P())]
(i —p) (0 —n,)
(the hyperplane separating Ri and Rj IS generally not
orthogonal to the line between the means!)
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FIGURE 2.12. Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmet-
ric Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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® Case X, = arbitrary

® The covariance matrices are different for each category

gi(x)= XtWiX+WitX=Wio
where :

W, = —52;1
2

W =Zi_1:ui

Wio = _%ﬂitzi_lﬂi _%In‘zi‘-l- InP(w; )

The decision surfaces are hyperquadratics

(Hyperguadrics are: hyperplanes, pairs of hyperplanes,

hyperspheres, hyperellipsoids, hyperparaboloids,
hyperhyperboloids)
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FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries tha
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard 0. Duda,
Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.
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Bayes Decision Theory — Discrete
Features

® Components of x are binary or integer valued, x can take
only one of m discrete values

Vi, Vo, veny Vi

=>» concerned with probabilities rather than probability
densities in Bayes Formula:

B P(Xle)P(a)j)

P(a)j|x)— b (x)

where

P(x) =Y P(x|0,)P (o))
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Bayes Decision Theory — Discrete
Features

® Conditional risk Is defined as before: R(a|x)

® Approach is still to minimize risk:

o’ =argminR(¢; | x)
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Bayes Decision Theory — Discrete
Features

Case of independent binary features in 2
category problem

Let X = [Xq, X5, ..., Xq]'Where each Xx; is either O
or 1, with probabillities:

pi=PX=1]| o)
q=PX=1]w,)
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Bayes Decision Theory — Discrete
Features

® Assuming conditional independence, P(x|w;) can be
written as a product of component probabilities:

P(x|m,) = H p (1- pi)l_xi

and

P(x|w,) = H g (1-q )l_xi

yielding a likelihood ratio given by :

Pxlo) & p ) (1-p )
P(x|w,) 1_1[( jil_qij

Pattern Classification, Chapter 2 (Part 3)




Bayes Decision Theory — Discrete
Features

® Taking our likelihood ratio

P(Xla)l) . p|
e e [

and plugging it into Eq. 31

px|@) | Pl@r)
p(x|@,)  plew,)

g(x)=In
yields:

Piya-x)niz
Qi 1-
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® The discriminant function In this case Is:

d
g(x)=ZWiXi + W,
i=1

where :
W. = In pi(l_qi )

decide @, If g(X)>0and w, If g(x)<0
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