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Classification

All materials in these slides were taken 
from
Pattern Classification (2nd ed) by R. O. 
Duda, P. E. Hart and D. G. Stork, John Wiley 
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Chapter 2 (Part 2): 
Bayesian Decision Theory

(Sections 2.3-2.5)

• Minimum-Error-Rate Classification

• Classifiers, Discriminant Functions and Decision Surfaces

• The Normal Density
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Minimum-Error-Rate Classification

• Actions are decisions on classes
If action αi is taken and the true state of nature is ωj then:
the decision is correct if i = j and in error if i ≠ j

• Seek a decision rule that minimizes the probability 
of error which is the error rate
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• Introduction of the zero-one loss function:

Therefore, the conditional risk is: 

“The risk corresponding to this loss function is the 
average probability error”
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• The Bayes decision rule depends on minimizing risk

• Minimizing the risk requires selecting the i that 
maximizes P (ωi | x)
(since R (αi | x) = 1 – P (ωi | x))

• For Minimum error rate

• Decide ωi if P (ωi | x) > P (ωj | x) ∀j ≠ i
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• Regions of decision and zero-one loss function, therefore 
(using the likelihood ratio formula:

• If λ is the zero-one loss function which means:
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and Decision Surfaces

• The multi-category case

• Set of discriminant functions gi(x), i = 1,…, c

• The classifier assigns a feature vector x to class ωi

if: 
gi(x) > gj(x) ∀j ≠ i



Pattern Classification, Chapter 2 (Part 2)

8



Pattern Classification, Chapter 2 (Part 2)

9

• Let gi(x) = - R(αi | x)
(max. discriminant corresponds to min. risk!)

• For the minimum error rate, we take 
gi(x) = P(ωi | x)

(max. discrimination corresponds to max. 
posterior!)

gi(x) ≡ P(x | ωi) P(ωi)

gi(x) = ln P(x | ωi) + ln P(ωi)
(ln: natural logarithm!)
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• Feature space divided into c decision regions

if gi(x) > gj(x) ∀j ≠ i then x is in Ri

(Ri means assign x to ωi)

• The two-category case
• A classifier is a “dichotomizer” that has two discriminant

functions g1 and g2

Let g(x) ≡ g1(x) – g2(x)

Decide ω1 if g(x) > 0 ; Otherwise decide ω2
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• The computation of g(x)
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The Normal Density

• Univariate density
• Density which is analytically tractable
• Continuous density
• A lot of processes are asymptotically Gaussian
• Handwritten characters, speech sounds are ideal or prototype 

corrupted by random process (central limit theorem)

Where: 
μ = mean (or expected value) of x
σ2 = expected squared deviation or variance
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• Multivariate density

• Multivariate normal density in d dimensions is:

where:
x = (x1, x2, …, xd)t (t stands for the transpose vector form)
μ = (μ1, μ2, …, μd)t mean vector
Σ = d*d covariance matrix
|Σ | and Σ -1 are determinant and inverse respectively
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