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Chapter 2 (Part 2):
Bayesian Decision Theory
(Sections 2.3-2.5)

® Minimum-Error-Rate Classification
® Classifiers, Discriminant Functions and Decision Surfaces

® The Normal Density




Minimum-Error-Rate Classification

® Actions are decisions on classes
If action a; Is taken and the true state of nature Is w; then:

the decision is correct if / = jand in error if / =/

® Seek a decision rule that minimizes the probability
of error which is the error rate
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® |ntroduction of the zero-one loss function:

Therefore, the conditional risk Is:

R(a 1X)= 3, 4(a 10, P (@, 1X)

=D P(@;|x)=1-P(a;|x)

j#1

“The risk corresponding to this loss function iIs the
average probability error”
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® The Bayes decision rule depends on minimizing risk

® Minimizing the risk requires selecting the / that
maximizes P (o, | X)

(since R(ea;| ) =1 -P(w;| X))

® Lor Minimum error rate

® Decide w; ifP (w;| X) > P(w;| %) Vj=i
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® Regions of decision and zero-one loss function, therefore
(using the likelihood ratio formula:

Let 2e=H P(@2) _ g ipon decide o, if - OX191) S g

Ay =4, Plw,) P(x|w,)

® |f A IS the zero-one loss function which means:
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FIGURE 2.3. The likelihood ratio p(x|e)/plx|w;) for the distributions shown in
Fig. 2.1, 1t we employ a zero-one or classification loss, our decision boundaries are
determined by the threshold #,. If our loss function penalizes miscategorizing w; as an
palterns more than the converse, we gel the larger threshold &, and hence R, becomes
smaller. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classifica-

tion. Copyright © 2007 by John Wiley & Sons, Inc.
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Classifiers, Discriminant Functions
and Decision Surfaces

® The multi-category case

® Set of discriminant functions gi(x), 1 = 1,..., ¢

® The classifier assigns a feature vector x to class o,
If:

gix) = gi(x) vj =1
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FIGURE 2.5. The functional structure of a general statistical pattern classifier which

includes d inputs and ¢ discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input paltern

accordingly. The arrows show the direction of the flow of information, though frequently
the arrows are omitted when the direction of flow is self-evident. From: Richard O.

Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by
lohn Wiley & Sons, Inc.
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® Let g(x) = - R(e;[Xx)
(max. discriminant corresponds to min. risk!)

® For the minimum error rate, we take
9(x) = P(w, [ x)

(max. discrimination corresponds to max.
posterior!)

g(x) = P(x | @) P(w)

gx) =In P(x | w) + In P(w,)

(In: natural logarithm!)
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® Feature space divided Into ¢ decision regions

If g(x) = gi(x) Vj #1then x Is in ;e,

(A’, means assign xto w)

® The two-category case

® A classifier Is a “dichotomizer” that has two discriminant
functions g, and g,

Let g9(x) = 9,(%) — 9-(%)
Decide w, /f g(x) > 0 ; Otherwise decide o,

Pattern Classification, Chapter 2 (Part 2)




® The computation of g(x)

g(X)= P(“’HX)_P(wz‘X)

In P(X‘wl)_l_ln P(wl)
P(X|®,) P(w, )
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Caussian, the decision boundary consists of two hyperbolas, and thus the decision
region R is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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The Normal Density

® Univariate density

® Density which is analytically tractable

® Continuous density

® A lot of processes are asymptotically Gaussian
@

Handwritten characters, speech sounds are ideal or prototype
corrupted by random process (central limit theorem)

1 = mean (or expected value) of x
o = expected squared deviation or variance
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
X — | = 2a, as shown. The peak of the distribution has value p(p) = 1/ 2ra. From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright
@© 2001 by John Wiley & Sons, Inc.
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® Multivariate density

® Multivariate normal density in d dimensions is:

1 1 _
P(X) = x| = (X= ) T (X )

(Zﬂ)dIZ‘Z‘

where:

X =(Xx;, X5 ..., X))! (t stands for the transpose vector form)
u = (uy, 1 ..., Hy)f mean vector

2 = d*d covariance matrix

|2'| and X' -1 are determinant and inverse respectively
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