UCLA Statistical Consulting Center R Bootcamp

Introduction to R

Irina Kukuyeva ikukuyeva@stat.ucla.edu

September 20, 2010

Outline

- Introduction
- Preliminaries
- Working with Vectors and Matrices
- Data Sets in R
- Overview of Plots in R
- R Environment
- Common Bugs and Fixes
- R Resources
- Oppendix: Background Information for the Waves Data

Consulting neca

Irina Kukuyeva ikukuyeva@stat.ucla.edu

- Introduction
 - What is R?
 - What can you do with R?
 - What is the catch?
- Preliminarie
- Working with Vectors and Matrices
- Data Sets in R
- Overview of Plots in R
- R Environment
- 7 Common Bugs and Fixes

Irina Kukuyeva ikukuyeva@stat.ucla.edu

- R Resource
- Appendix: Background Information for the Waves Da

troduction to R UCLA SCC

What is R?

What is R?

"R is a computer language that allows the user to program algorithms and use tools that have been programmed by others."

Zuur et. al. (2009)

What can you do with R?

What can you do with R?

You can ...

- do calculations
- perform statistical analysis (using available code)
- create powerful graphics
- write your own functions

What is the catch?

What is the catch?

R has a steep learning curve:

• It requires programming...

... but

- the programming used in R is very similar across methods
- a lot has already been done in terms of statistical tools

- Introduction
- Preliminaries
 - Software Installation
 - Creating Variables
- Working with Vectors and Matrices
- 4 Data Sets in R
- Overview of Plots in R
- 6 R Environment
- Common Bugs and Fixes
- R Resource

ntroduction to R UCLA SCC

Installing R

Prelim

- Go to http://cran.r-project.org/ and select either:
 - MacOS X
 - Windows and base
- Select to download the latest version: 2.11.1 (2010-05-31)
- Install and Open. The R window should look like this:

Prelim

Creating Variables

 To use R as a calculator, type 2 + 5 and hit ENTER. (Note how R prints the result.) Your output should look like this:

[1] 7

• To create variables in R, use either - > or =:

```
1  # Approach 1
2  a=5
3  a
4  # Approach 2
5  a=5;  a
6  # Approach 3
7  b<-5;  b</pre>
```

Consulting recta

◆ロ → ◆部 → ◆基 → ◆基 → ● の へ ○

- Introduction
- Preliminaries
- Working with Vectors and Matrices
 - Working with Vectors
 - Creating Vectors
 - Some Vector Functions
 - Sub-setting with Vectors
 - Working with Matrices
 - Creating Matrices
 - Some Matrix Functions
 - Subsetting with Matrices
 - From Vectors to Matrices
 - Creating Matrices from Vectors
 - Exercise
- Data Sets in I
- Overview of Plots in F
- R Environment
- Common Bugs and Fixes
- R Resources
- Appendix: Background Information for the Waves Data

Creating Vectors

Use the concatenation function c():

$$d = c(3,4,7); d$$

[1] 3 4 7

For vectors with equal spacing, use seq():

```
e = seq(from = 1, to = 3, by = 0.5); e
```

For vectors of a given length, use rep():

$$_1$$
 f= \underline{rep} (NA, 6); f

[1] NA NA NA NA NA NA

Some Useful Vector Functions 1

- To find the length of the vector, use length():
 - 1 length(d)
- [1] 3
 - To find the maximum value of the vector, use max():
 - 1 <u>max</u>(d)
- [1] 7

∢□▶ ∢□▶ ∢ 亘 ▶ ∢ 亘 * り q ⊙

Some Useful Vector Functions II

- To find the mean of the vector, use mean():
 - 1 mean(d)
- [1] 4.666667

Sub-setting with Vectors I

- To find out what is stored in a given element of the vector, use []:
 - d[2]

[1] 4

- To see if any of the elements of a vector equal a certain number, use ==:
 - d = = 3
- TRUE FALSE FALSE

Working with Vectors

Sub-setting with Vectors II

- To see if any of the elements of a vector do not equal a certain number, use !=:
 - d! = 3

[1] FALSE TRUE TRUE

- To delete elements of a vector, use and/or c():
 - $_{1}$ e[-c(1,3)]; e
- [1] 1.5 2.5 3.0

Sub-setting with Vectors III

 To obtain the observation number(s) of the vector when a condition is satisfied, use which():

$$_1$$
 which (d==4)

Note: To store the result, type:

$$a = which(d==4); a$$

Sub-setting with Vectors IV

 To obtain the observation number(s) for the maximum value of the vector, use which():or which.max():

```
a=which(d==max(d)); a
b=which.max(d); b
```


Working with Matrices

Creating Matrices

• To create a matrix, use the matrix() function:

```
1 mat<-matrix(10:15, nrow=3, ncol=2,</pre>
```

byrow=F); mat

```
[,1] [,2]
[1,] 10 13
[2,] 11 14
[3,] 12 15
```


Some Useful Matrix Functions 1

• To find the transpose of a matrix, use t():

Some Useful Matrix Functions II

Vect and Mat

 To multiply two matrices, use %*%. *Note:* If you use * instead, you will be performing matrix multiplication element-wise.

```
mat%*%t(mat)
```

```
[,1] [,2] [,3]
[1,]
     269 292
              315
[2,] 292 317 342
[3,] 315
         342
              369
```


Some Useful Matrix Functions III

Vect and Mat

To find the dimensions of a matrix, use dim():

```
dim(mat)
```

[1] 3 2

 Alternatively, we can find the rows and columns of the matrix, by nrow() and ncol():

```
nrow(mat); ncol(mat)
```


Subsetting with Matrices I

Vect and Mat

• To see what is stored in the first element of the matrix, use []:

mat[1,1]

[1] 10

• To see what is stored in the first row of the matrix:

1 mat[1,]

[1] 10 13

Subsetting with Matrices II

Vect and Mat

- To see what is stored in the second column of the matrix:
 - mat[, 2]
- [1] 13 14 15
 - To extract elements 1 and 3 from the second column, use c() and []:
 - 1 mat[c(1,3), 2]
- |1| 13 15

Subsetting with Matrices III

Vect and Mat

 To extract everything but elements 1 and 3 from the second column, use -c() and []:

```
1 mat[-c(1,3), 2]
```

[1] 14

 To extract the observation containing the maximum value, use which.max() and []:

```
mat[which.max(mat)]
```

[1] 15

From Vectors to Matrices

d

Creating Matrices from Vectors

• To stack two vectors, one below the other, use rbind():

```
mat1<-rbind(d,d); mat1</pre>
```

• To stack two vectors, one next to the other, use cbind():

```
mat2<-cbind(d,d); mat2</pre>
```

d d

Irina Kukuveva ikukuveva@stat.ucla.edu

[1,] 3 3

[2,] 4 4

[3,]77

UCLA SCC Introduction to R

Exercise I

Sum all the even rows of column 2 of the 10×10 matrix that contains the 1^{st} 100 numbers.

Hint:

- Step 1: Create a 10×10 matrix (call it ex1) containing the elements 1 through 100, input elements by row.
 - Step 2: Create an index to store the even rows of a matrix.

Hint: Can you use seq()?

Step 3: Subset ex1 appropriately, i.e. sum over the even rows of column 2 of the matrix.

➤ Solution here.

Irina Kukuyeva ikukuyeva@stat.ucla.edu

- Introduction
- Preliminarie
- Working with Vectors and Matrices
- Data Sets in R
 - Importing Data sets into R
 - Data from the Internet
 - Using Data Available in R
 - Importing Data from Your Computer
 - Importing Data from Your Computer
 - Working with Data sets in R
 - Exercise
- Overview of Plots in F
- R Environment
- Common Bugs and Fixes
- R. Resources
- Appendix: Background Information for the Waves Data

Irina Kukuyeva ikukuyeva@stat.ucla.edu

Importing Data sets into R

Data sets into R.

Approach 1: Using Data Available in R

- To use a data set available in one of the R packages, install that package (if needed).
- 2 Load the package into R, using the library() function.
 - 1 library(alr3)
- Extract the data set you want from that package, using the data() function. In our case, the data set is called UN2.
 - data(UN2)

Importing Data sets into R

Data sets into R.

Approach 2a: Importing Data from Your Computer

For data sets that are not an R data set object (i.e. do not have a .RData extension):

- Oheck what folder R is working with now:
 - getwd()
- 2 Tell R in what folder the data set is stored (if different from (1)). Suppose your data set is on your desktop:
 - 1 setwd("~/Desktop")
- Now use the read.table() command to read in the data. substituting the name of the file for the website.

Data sets into R

Approach 2b: Importing Data from Your Computer

For data sets that are an R data set object (i.e. have a .RData extension):

Double click on the file

OR

• Load the data set into R from the console:

Datasets

1 load("datasetName.RData")

(4日) (部) (注) (注) 注 り(で)

Importing Data sets into R

Data sets into R.

Approach 3a: Data from the Internet

When downloading data from the internet that are not an R data set object, use read.table(). In the arguments of the function:

- header: if TRUE, tells R to include variables names when importing
- sep: tells R how the entires in the data set are separated
 - sep=",": when entries are separated by COMMAS
 - $sep="\t":$ when entries are separated by TAB
 - sep=" ": when entries are separated by SPACE

```
1 data <-read.table("http://www.stat.ucla.edu</pre>
     /~vlew/stat130a/datasets/twins.csv",
     header=TRUE, sep=",")
```


4日 > 4周 > 4 至 > 4 至 >

Data sets into R

Approach 3b: Data from the Internet

When downloading data from the internet that are an R data set object, use url.show():

```
url.show("http://scc.stat.ucla.edu/page
_attachments/0000/0175/WavesBasicR.RData")
```

```
> url.show("http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData")
trying URL 'http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData'
Content type 'text/plain' length 1472151 bytes (1.4 Mb)
opened URL
```

downloaded 1.4 Mb

> load("/var/folders/Ey/EyZMNPDpF5GofqWf41MY1k+++TM/-Tmp-/RtmpIWMEZ4/file76955b3")

Working with Data sets in R

Working with Data sets in R I

- To use the variable names when working with data, use attach():
 - attach(UN2)
- After the variable names have been "attached", to see the variable names, use names():
 - names (UN2)
- To see the descriptions of the variables, use ?:
 - ?UN2

Working with Data sets in R II

- To stop referring to variable names directly, use detach() (but not now):
 - detach(UN2)
- To get the mean of all the variables in the data set, use mean():

```
mean (UN2)
```

```
logPPgdp logFertility
                                  Purban
                                             Locality
   10.993094
                   1.018016
                               55.538860
                                                   NA
Warning message:
In mean.default(X[[4L]], ...) :
  argument is not numeric or logical: returning NA
```

Working with Data sets in R III

 To get the variance-covariance matrix of all the (numerical) variables in the data set, use var():

```
var(UN2[, -4])
```

Irina Kukuveva ikukuveva@stat.ucla.edu

```
Purban
              logPPgdp logFertility
             5.6408387
                        -0.8647205 44.555873
logPPgdp
                          0.2887060 -7.630714
logFertility -0.8647205
Purban
            44.5558730 -7.6307145 579.197701
```


UCLA SCC

Exercise

Exercise II

Using the data set WavesBasicR.RData, find out how many observations are greater than the mean wave height.

Hint:

- Step 1: Select the third variable for the analysis.
- Step 2: Calculate the mean for the variable.
- Step 3: See which observations are greater than the mean (save the output as out).
 - Step 4: Calculate the length of out.

▶ Solution here

Introduction to R UCLA SCC

¹http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData

- Introduction
- Preliminaries
- Working with Vectors and Matrices
- Data Sets in R
- Overview of Plots in R
 - Creating Plots
 - Saving Plots as a PDF
 - Exercise
- R Environment
- Common Bugs and Fixes
- R Resource
- Appendix: Background Information for the Waves Data

UCLA SCC

- To make a plot in R, you can use plot():
 - 1 attach(data)
 - plot(x, y, main="Coordinates of the Wave Heights")

Irina Kukuyeva ikukuyeva@stat.ucla.edu

ntroduction to R UCLA SCC

- To make a histogram in R, you can use hist():

 To add information to the histogram you can use abline():

```
hist(wave_height,

xlab="Wave

Heights", main=

"Histogram of

Wave Heights")

abline(v=mean(wave

_height), col="

red", lwd=3)
```


- To make a boxplot in R, you can use boxplot():
 - boxplot(data, xlab
 ="Variable
 Names", main="
 Boxplot of the
 Data")

To add/highlight points for an existing plot, use points():

```
ind <-which (wave_height >6)
  plot(x, y, main="Coordinates of the Wave
     Heights")
  points(y[ind]~x[ind], col="red", pch=19)
4 library (maps)
  map("world", add=TRUE)
```


4日 > 4周 > 4 至 > 4 至 >

Creating Plots

Creating Plots in R II

Saving Plots as a PDF

Note: The files will be saved in the folder specified with setwd(). To save a plot in R as a PDF, you can use pdf():

Exercise

Exercise III

Using the data set WavesBasicR.RData,² find out what hemisphere has the largest waves.

Hint:

- Step 1: Set a threshold for "large".
- Step 2: Determine which observations are greater than the threshold.
 - Step 3: Highlight these observations in a plot.

► Solution here.

Introduction to R UCLA SCC

²http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData مرادة المسالية

- Introduction
- 2 Preliminaries
- Working with Vectors and Matrices
- Data Sets in 1
- Overview of Plots in R
- R Environment
 - Working with R Objects
 - Saving and Loading R Objects
 - Exporting R Objects to LaTeX
 - Exporting R Objects to Other Formats
 - Saving R Commands
- Common Bugs and Fixes
- R Resources
- Appendix: Background Information for the Waves Data

Irina Kukuyeva ikukuyeva@stat.ucla.edu

Working with R Objects

Working with R Objects I

- To see the names of the objects available to be saved (in your current workspace), use ls().
 - 1 ls()

- To remove objects from your workspace, use rm().
 - 1 <u>rm</u>(d)
 - 2 ls()

```
"UN2" "a" "b" "data" "e" "f" "h" "mat1" "mat2"
```


Irina Kukuveva ikukuveva@stat.ucla.edu

Working with R Objects II

- To remove all the objects from your workspace, type:
 - rm(list=ls())
 - 2 <u>ls</u>()

character(0)

Saving and Loading R Objects

- To save (to the current directory) all the objects in the workspace, use save.image().
 - 1 save.image("basicR.RData")
- To load (from the current directory), use load().
 - 1 load("basicR.RData")

Exporting R Objects to LaTeX I

- To export certain R objects to be used in LaTeX, use xtable().
 - 1 library(xtable)
 - 2 xtable(summary(UN2))

◆ロ → ◆部 → ◆き → き り へ ()

Exporting R Objects to LaTeX II

```
% latex table generated in R 2.9.0 by xtable 1.5-5 package
% Fri Sep 18 19:58:39 2009
\begin{table} [ht]
\begin{center}
\begin{tabular}{rllll}
  \hline
     logPPgdp & logFertility &
                                    Purban &
                                                   Locality \\
 \hline
1 & Min.
           6 492
                    & Min.
                             0.0000
                                                  6.00
                                                         & Afghanistan:
                                       & Min.
  2 & 1st Qu.: 8.867
                      & 1st Qu.:0.6366
                                         & 1st Qu.: 35.00
                                                           & Albania
 3 & Median :10.920
                      & Median :0.9783
                                         & Median : 57.00
                                                           & Algeria
  4 & Mean
            :10.993
                      & Mean
                               :1.0180
                                         & Mean
                                                  : 55.54
                                                           & Angola
                                                                        : 1
                                                                               11
 5 & 3rd Qu.:12.938
                      & 3rd Qu.:1.4493
                                         & 3rd Qu.: 75.00
                                                           & Argentina : 1
                                                                               11
 6 & Max. :15.444
                      & Max.
                               :2.0794
                                         & Max. :100.00
                                                           & Armenia
                                                                               11
                                                                        : 1
 7 & & & & (Other)
                         :187
                              11
   \hline
\end{tabular}
\end{center}
\end{table}
```


Irina Kukuyeva ikukuyeva@stat.ucla.edu

Exporting R Objects to LaTeX III

	logPPgdp	logFertility	Purban	Locality
1	Min. : 6.492	Min. :0.0000	Min. : 6.00	Afghanistan: 1
2	1st Qu.: 8.867	1st Qu.:0.6366	1st Qu.: 35.00	Albania : 1
3	Median :10.920	Median :0.9783	Median : 57.00	Algeria : 1
4	Mean :10.993	Mean :1.0180	Mean : 55.54	Angola : 1
5	3rd Qu.:12.938	3rd Qu.:1.4493	3rd Qu.: 75.00	Argentina : 1
6	Max. :15.444	Max. :2.0794	Max. :100.00	Armenia : 1
7				(Other) :187

UCLA SCC

Exporting R Objects to Other Formats

• To save (to the current directory) certain objects in the workspace to be used in Excel, use write.csv().

```
write.csv(mat, "mat.csv")
```


4日 > 4周 > 4 至 > 4 至 >

Saving R Commands I

 To see all of the commands you typed in an R session, click on the Yellow and Green Tablet

Saving R Commands II

- To save all of the commands you typed in an R session, use:
 - savehistory(file="history.log")
- Alternatively, use a .r file to store your commands.
 - Go to: File -> New Document
 - Type your commands
 - Save the file as "code.r"
 - Go back to the R Console
 - To run all the commands, use:
 - source("code.r")

4 D > 4 A > 4 B > 4 B >

- Data Sets in R

- Common Bugs and Fixes
 - Syntax Error
 - Trailing +
 - Error When Performing Operations

UCLA SCC

Syntax Error

Error: syntax error

Possible causes:

Irina Kukuveva ikukuveva@stat.ucla.edu

- Incorrect spelling (of the function, variable, etc.)
- Including a "+" when copying code from the Console
- Having an extra parenthesis at the end of a function
- Having an extra bracket when subsetting

Trailing +

Trailing +

Possible causes:

- Not closing a function call with a parenthesis
- Not closing brackets when subsetting
- Not closing a function you wrote with a squiggly brace

UCLA SCC

Irina Kukuveva ikukuveva@stat.ucla.edu

Error When Performing Operations

Error in ... : requires numeric matrix/vector arguments

Possible causes:

- Objects are data frames, not matrices
- Elements of the vectors are characters

Possible solutions:

- Coerce (a copy of) the data set to be a matrix, with the as.matrix() command
- Coerce (a copy of) the vector to have numeric entries, with the as.numeric() command

Introduction to R UCLA SCC

- Introduction
- 2 Preliminaries
- Working with Vectors and Matrice
- 4 Data Sets in R
- 5 Overview of Plots in R
- 6 R Environment
- Common Bugs and Fixes
- R Resources
 - Getting Help in R
 - Useful Links for R.

Irina Kukuyeva ikukuyeva@stat.ucla.edu

R Help

For help with any function in R , put a question mark before the function name to determine what arguments to use, examples and background information.

ı ?<u>plot</u>

Online Resources for R I

- Download R: http://cran.stat.ucla.edu/
- Search Engine for R: http://rseek.org
- R Reference Card: http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- R Graph Gallery: http://addictedtor.free.fr/graphiques/
- R Graphics Gallery: http://research.stowers-institute.org/efg/R/
- Statistics with R: http://zoonek2.free.fr/UNIX/48 R/all.html
- Springer (useR! series): http://www.springerlink.com/home/main.mpx

4 D > 4 A > 4 B > 4 B >

Useful Links for R

Online Resources for R II

- UCLA Statistics Information Portal: http://info.stat.ucla.edu/grad/
- UCLA Statistical Consulting Center: http://scc.stat.ucla.edu

Useful Links for R

References

I. Kukuyeva.

Basic R.

UCLA Statistical Consulting Center, Sept. 28, 2010.

http://scc.stat.ucla.edu/mini-courses/materials-from-past-mini-courses/fall-2009-mini-course-materials/

◆ロ → ◆部 → ◆き → き り へ ()

- Introduction
- 2 Preliminaries
- Working with Vectors and Matrices
- 4 Data Sets in R
- Overview of Plots in R
- 6 R Environment
- Common Bugs and Fixes
- R Resources
- Oppendix: Background Information for the Waves Data A CONTRACT OF THE PROPERTY OF THE PROPE

ntroduction to R UCLA SCC

Appendix: Motivation for the Waves Data

Motivation

In 1992-2003 ships sunk at sea (due to wind and waves) contributed to 30.9 percent of all losses ^a.

^aExtreme Waves, C. Smith, p. 4

Background

Sea surface topography is measured along a track:

- frequency of 13.6GHz (K_u band) and 5.3 GHz (C band)
- ullet repeat cycle of ~ 10 days
- footprint of 6 km

Appendix

Appendix: Overview of the Waves Data

Variable of interest: Significant wave heights (in meters) = the average of the top $\frac{1}{3}$ of the waves in the footprint.

Time interval: April 3 - May 3, 2008 Number of observations: 80.072 3.

SWH greater than 3.5 meters were chosen.

³80.072 are a subset of the 5,082,121 ocean observations for the time period. First, every 15th observation was chosen. Then observations with a